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Abstract

Version 7 of the SAS™Y System brings major enhancements
to the statistical software. All output is now handled by the
Output Delivery System, which gives the user control over
the printing of the results, allows all tables and statistics to
be output to SAS data sets, and produces web-browsable
HTML output. New procedures provide tools for partial least
squares analysis and spatial prediction. The GENMOD
procedure now provides LSMEANS and ESTIMATE state-
ments, and its GEE facility provides the alternating logistic
regression algorithm, produces Wald and score tests for
model effects, and handles the ordinal response case. Ad-
ditional exact tests have been added to several procedures,
and even the TTEST procedure has been updated.

In addition to procedures for survey design and analysis,
Version 7 also introduces experimental procedures for non-
parametric density estimation and nonparametric regres-
sion, as discussed in Part Il of this paper.

Introduction

Statistical developers have been busy at work on enhance-
ments for Version 7 of the SAS System, targeted for avail-
ability during the fourth quarter, 1998. The Output Delivery
System is now used by all procedures to handle their re-
sults. Instead of directly generating list files and output data
sets, procedures generate an output object for every result
that can be displayed. There are two components to the
output object: the data component, which is the raw results,
and the template component, which is a description of how
the output should be arranged when formatted on a page.

The default output destinations continue to be the standard
list file or SAS output window, and the established OUT=
data sets and OUTPUT statements are still supported.
However, this system enables you to send output to other
destinations such as output directories, modify the output
style with the new TEMPLATE procedure, merge pieces of
the output into more comprehensive pages, and render the
output in HTML, rich-text, Postscript, or PCL format. You
can also replay the output after the procedure has already
been executed and output to a data set any table or statistic
that the procedure computes.

The incorporation of ODS in all of the statistical procedures
gives the user long-needed flexibility in the management of
analytical results and their inclusion into various document

forms; for more information, refer to Olinger and Tobias
(1998) in these proceedings.

Another outcome of the ODS project is a more consistent
appearance of the SAS/STAT output. A major effort was
undertaken to make the output more readable and similar
across the statistical procedures. Table formats, statistical
terms, and abbreviations are now much more consistent.

While the ODS work has been a major undertaking, substan-
tial progress has been made with statistical enhancements.
These fall into the following categories: new production pro-
cedures, enhancements to existing production procedures,
and new experimental procedures that take SAS/STAT soft-
ware in new directions. This paper highlights some of these
features.

Partial Least Squares

Partial least squares is a very popular technique in the
field of chemometrics. The goal of regular least squares
regression is to minimize sample response prediction error,
finding linear functions of the predictors that explain as much
variation as possible in the response. Predictive partial least
squares has the additional goal of accounting for variation
in the predictors, since directions in the predictor space
that are well sampled should provide better prediction for
new observations when the predictors are highly correlated.
The PLS procedure, production in Version 7 of the SAS
System, extracts successive linear combinations of the
predictors, called factors or components, that optimally
explain predictor and/or response variation.

Specifically, these techniques are

e principal components regression, which extracts fac-
tors to explain as much predictor sample variation as
possible

e reduced rank regression, which extracts factors to
explain as much response variation as possible

e partial least squares regression, which balances the
two objectives of explaining response variation and
explaining predictor variation

The data help to determine the number of factors that you
extract. You can improve the model fit if you extract more
factors, but if you extract too many factors you may overfit
the data. With the PLS procedure, you can choose the



number of extracted factors via cross-validation, which is
a protocol for fitting the model to part of the data and
minimizing prediction error for the unfitted part. One-at-a-
time validation, splitting the data into blocks, and test set
validation methods are included.

Spectrometric Calibration

As an example, consider the following data reported by
Umetrics (1995). Investigators studying pollution in the
Baltic Sea wanted to use the spectra of samples of sea water
to determine the amounts of three compounds present:
lignin sulfonate (LS: pulp industry pollution), humic acids
(HA: natural forest products), and optical whitener from
detergent (DT). The predictors are the frequencies in sample
spectrum, and the responses are the amounts of various
chemicals in the sample.

For the purposes of calibrating the model, samples of known
compositions are used. The calibration data consist of
16 samples of known concentrations of LS, HA, and DT,
with spectra based on 27 frequencies (or, equivalently,
wavelengths). The following statements create a SAS data
set named SAMPLE.

data sanpl e;
i nput obsnam $ v1-v27 |s ha dt @@@@
dat al i nes;
EML 2766 2610 3306 3630 3600 3438 3213 3051 2907 2844 2796
2787 2760 2754 2670 2520 2310 2100 1917 1755 1602 1467
1353 1260 1167 1101 1017 3.0110 0.0000 0. 00
EM2 1492 1419 1369 1158 958 887 905 929 920 887 800
710 617 535 451 368 296 241 190 157 128 106
89 70 65 56 50 0. 0000 0.4005 0.00
EMB 2450 2379 2400 2055 1689 1355 1109 908 750 673 644
640 630 618 571 512 440 368 305 247 196 156
120 98 80 61 50 0.0000 0.0000 90.63
EM4 2751 2883 3492 3570 3282 2937 2634 2370 2187 2070 2007
1974 1950 1890 1824 1680 1527 1350 1206 1080 984 888
810 732 669 630 582 1.4820 0.1580 40.00
(12 other sanpl es)

To isolate a few underlying spectral factors that provide a
good predictive model, you can fit a PLS model to the 16
samples with the following statements.

proc pls data=sanpl e;
nodel |s ha dt = v1-v27;

run;
Percent Variation Accounted for
by Partial Least Squares Factors
Nunber of

Extract ed Mbdel Effects Dependent Vari abl es
Factors Current Tot al Current Tot al
1 97. 4607 97. 4607 41. 9155 41. 9155

2 2.1830 99. 6436 24,2435 66. 1590

3 0.1781 99. 8217 24.5339 90. 6929

4 0.1197 99. 9414 3.7898 94. 4827

5 0. 0415 99. 9829 1. 0045 95. 4873

6 0.0106 99. 9935 2.2808 97.7681

7 0.0017 99. 9952 1.1693 98. 9374

8 0. 0010 99. 9961 0. 5041 99. 4415

9 0.0014 99. 9975 0.1229 99. 5645

10 0. 0010 99. 9985 0. 1103 99. 6747

11 0. 0003 99. 9988 0. 1523 99. 8270

12 0. 0003 99. 9991 0.1291 99. 9561

13 0. 0002 99. 9994 0. 0312 99. 9873

14 0. 0004 99. 9998 0. 0065 99. 9938

15 0. 0002 100. 0000 0. 0062 100. 0000

Figure 1. PLS Variation Summary

By default, the PLS procedure extracts as many as 15 fac-
tors. The procedure lists the amount of variation accounted
for by each of these factors, both individual and cumulative.
See Figure 1 for the listing. Almost all of the variation is
explained by a relatively small number of factors—one or
two for the predictors and three to eight for the responses.

To continue the PLS modeling process, you make a choice
about the number of factors. You try to determine the
number of factors that sufficiently explain the predictor and
response variation without overfitting. One way to do this
is with cross-validation, in which you divide the data set
into two or more groups. You fit the model to all groups
except one, then you check the capability of the model to
predict responses for the group omitted. Repeating this for
each group, you then can measure the overall capability
of a given form of the model. The Predicted REsidual
Sum of Squares (PRESS) statistic is based on the residuals
generated by this process.

To select the number of extracted factors by cross-
validation, you specify the CV= option with an argument
that specifies which cross-validation method to use. For
example, a common method is split-sample validation, in
which the different groups are comprised of every seventh
observation beginning with the first, every seventh obser-
vation beginning with the second, and so on. You can
specify split-sample validation using the CV=SPLIT option,
as illustrated in the following statements.

proc pls data=sanple cv=split;
nodel |s ha dt = v1-v27;
run;

The resulting output is shown in Figure 2 and Figure 3.

Split-sanple Validation for the Nunber of Extracted Factors

Number of Root
Extracted Mean
Factors PRESS

0 1.107747

1 0. 957983

2 0.931314

3 0. 520222

4 0. 530501

5 0.586786

6 0. 475047

7 0. 477595

8 0. 483138

9 0. 485739

10 0. 48946

11 0.521445

12 0. 525653

13 0. 531049

14 0. 531049

15 0. 531049

M ni mum root nean PRESS 0. 4750
M ni m zi ng nunber of factors 6

Figure 2. Split-Sample Validated PRESS Statistics for
Number of Factors



Percent Variation Accounted for
by Partial Least Squares Factors

Number of

Extract ed Mbdel Effects Dependent Vari abl es

Factors Current Tot al Current Tot al
1 97. 4607 97. 4607 41. 9155 41. 9155
2 2.1830 99. 6436 24,2435 66. 1590
3 0.1781 99. 8217 24.5339 90. 6929
4 0.1197 99. 9414 3.7898 94. 4827
5 0. 0415 99. 9829 1.0045 95. 4873
6 0. 0106 99. 9935 2.2808 97.7681

Figure 3. PLS Variation Summary for Split-Sample Vali-
dated Model

The absolute minimum PRESS is achieved with six ex-
tracted factors. Notice, however, that this is not much
smaller than the PRESS for three factors. By using the
CVTEST option, you can perform a statistical model com-
parison suggested by van der Voet (1994) to test whether
this difference is significant.

proc pls data=sanple cv=split cvtest;
nodel |s ha dt = v1-v27;
run;

The resulting output is shown in Figure 4 and Figure 5.

Split-sanple Validation for the Nunber of Extracted Factors

Nunmber of Root

Extracted Mean Prob >

Factors PRESS T**2 T**2

0 1.107747 9.272858 0. 0010

1 0. 957983 10. 62305 <. 0001

2 0.931314 8. 950878 0. 0020

3 0. 520222 5.133259 0. 1340

4 0. 530501 5.168427 0. 1090

5 0. 586786 6. 437266 0. 0120

6 0. 475047 0 1. 0000

7 0. 477595 2.809763 0. 4390

8 0. 483138 7.189526 0. 0130

9 0. 485739 7.931726 0. 0060

10 0. 48946 6. 612597 0. 0220

11 0. 521445 6. 666235 0. 0100

12 0. 525653 7.092861 0. 0060

13 0. 531049 7.538298 0. 0040

14 0. 531049 7.538298 0. 0040

15 0. 531049 7.538298 0. 0040
M ni mum root nean PRESS 0. 4750
M ni m zi ng nunber of factors 6
Smal | est nunber of factors with p > 0.1 3

Figure 4. Testing Split-Sample Validation for Number of
Factors

Percent Variation Accounted for
by Partial Least Squares Factors

Number of
Extract ed Mbdel Effects Dependent Vari abl es
Factors Current Tot al Current Tot al
1 97. 4607 97. 4607 41. 9155 41. 9155
2 2.1830 99. 6436 24.2435 66. 1590
3 0.1781 99. 8217 24.5339 90. 6929

Figure 5. PLS Variation Summary for Tested Split-Sample
Validated Model

The p-value of 0.1340 for comparing the cross-validated
residuals from models with 6 and 3 factors indicates that the
difference between the two models is insignificant; there-
fore, the model with fewer factors is preferred. You could
continue the analysis by applying this model to new sam-
ples.

For more information, refer to Tobias (1995).

Tools for Spatial Prediction

Spatial prediction is an analytical technique that is useful
in such areas as petroleum exploration, mining, and air
and water pollution analysis. In these fields, data are
often available at particular spatial locations, such as an
experimental station positioned a certain distance in the air
or under the ground, and the goal is to predict the quantities
at unsampled locations. The unsampled locations are often
mapped on a regular grid, and the predictions are used to
produce surface plots or contour maps.

In general, spatial prediction is any prediction method that
incorporates spatial dependence. A popular method of
spatial prediction is ordinary kriging, which produces both
predicted values and associated standard errors. Ordinary
kriging requires the complete specification (the form and
parameter values) of the spatial dependence of the spatial
process in terms of a covariance or semivariogram model.
Typically, the semivariogram model is not known in advance
and must be estimated, either visually or by some estimation
method. Performing spatial prediction requires two steps.
First, the theoretical covariance or semivariogram of the
spatial process must be determined. This involves choosing
both a mathematical form and the values of the associ-
ated parameters. Second, the theoretical semivariogram
is used in solving the kriging system at a specified set of
spatial points, resulting in predicted values and associated
standard errors.

Version 7 of SAS/STAT software includes production ver-
sions of two procedures that correspond to the two steps
described for spatial prediction for two-dimensional data.
Both of these procedures were available as experimental
procedures in Release 6.12. The VARIOGRAM procedure
computes the sample or empirical measures of spatial con-
tinuity (the semivariogram or covariance), which is then
used in determining the theoretical semivariogram model
by graphical or other means. The KRIGE2D procedure
performs ordinary kriging at specified points using the theo-
retical model. Results are usually displayed with the GPLOT
and G3D procedures or SAS/INSIGHTU software.

The VARIOGRAM procedure

e produces the sample regular semivariogram, a ro-
bust version of the semivariogram and the sample
covariance

e saves continuity measures in an output data set, al-
lowing plotting or parameter estimation for theoretical
semivariogram or covariance models

e computes isotropic and anisotropic measures
e saves an additional OUTPAIR data set to contain an



observation for each pair of points

¢ saves an additional OUTDISTANCE data set that
contains histogram information on the count of pairs
within distance intervals

The KRIGE2D procedure

¢ handles anisotropic and nested semivariogram mod-
els

e supports Gaussian, exponential, spherical, and
power models

¢ provides local kriging through specification of a radius
around a grid point or specification of number of
nearest neighbors to use

¢ writes kriging estimates and standard errors to an
output data set z

The following is a surface plot of kriged data, obtained
by applying the VARIOGRAM and KRIGE2D procedures.
For more details, refer to SAS/STATY Software Technical
Report: Spatial Prediction Using the SASY System.

Surfico Flol of Frged Coal Soam Thichnooss

Figure 6. Fitted Surface Using Values in ESTIMATE

New in Release 7 is the SIM2D procedure, which produces
a spatial simulation for a Gaussian random field with a
specified mean and covariance structure.

Survey Data Analysis

Many researchers use sample surveys to collect their in-
formation, relying on probability-based complex sample de-
signs such as stratified selection, clustering, and unequal
weighting. This is done to select samples at lowest possible
cost that can produce estimates that are precise enough
for the purposes of the study. To make statistically valid
inferences, the study design must be taken into account
in the data analysis. Traditional SAS procedures such as
the MEANS and GLM procedures compute statistics under
the assumption that the sample is drawn from an infinite
population with simple random sampling.

New SAS procedures for survey design and survey data
analysis enable the SAS user to work with data based on

complex sampling design. The SURVEYSELECT proce-
dure provides a variety of methods for selecting probability-
based random samples as well as samples according to a
complex multi-stage design that includes stratification, clus-
tering, and unequal probabilities of selection. You input a
SAS data set that includes the sampling frame, the list of
units from which the sample is to be selected, and specify
the selection method, the desired sample size or sampling
rate, and other selection parameters. PROC SURVEYS-
ELECT then selects the sample and produces an output
data set that contains the selected units, their selection
probabilities, and the sampling weights.

The SURVEYMEANS procedure computes estimates of
survey population totals and means, estimates of their vari-
ances, confidence limits, and other descriptive statistics.
The SURVEYREG procedure performs regression analysis
for sample survey data, fitting linear models and computing
regression coefficients and the covariance matrix. It pro-
vides significance tests for model effects and for specifiable
estimable linear functions of the model parameters. Both
of these procedures can handle sample designs such as
stratification, clustering, and unequal weighting.

The following statements illustrate the SURVEYREG pro-
cedure syntax. Besides the familiar MODEL statement,
the STRATA statement defines the strata and the WEIGHT
statement specifies the variable containing the sampling
weights.

proc surveyreg data=el der N=StrataTot;
strata state region / list;
nmodel Dent Expend = i ncome age status;
wei ght swei ght ;

run;

For more information, refer to An and Watts (1998) in these
proceedings.

Generalized Linear Models

Several users have requested an LSMEANS statement for
the GENMOD procedure, and Version 7 provides an exten-
sion of least squares means to the generalized linear model.
In addition, an ESTIMATE statement has been added, and
the negative binomial distribution is now supported through
the DIST=NEGBIN option in the MODEL statement. The
more recent GEE facilities have also been enhanced.

Least squares means are population marginal estimates,
or the class or subclass estimates that you would expect
for a balanced design involving the class variable with all
covariates at their mean value. In the ANOVA setting, these
estimates are means. In the generalized linear model set-
ting, these quantities are the appropriate link function being
modeled, such as the logit function in logistic regression.
The basic facilities of the LSMEANS statement such as es-
timating marginal estimates and differences are provided,
and the syntax is identical to that in PROC GLM.

The ESTIMATE statement is also now available with the
GENMOD procedure and is used to estimate linear functions
of parameters of the form Lb where b is the parameter



vector. The syntax is also the same as the ESTIMATE
statement in PROC GLM.

As an example, consider the following data (Collett 1991, p.
142). Three different insecticide treatments were applied to
flour beetles, in different dosages, and the proportion killed
as a result of exposure were recorded. Variable Y is the
number killed, N is the total number of beetles in that group,
DEPOSIT is the dosage, and TRT is the type of insecticide
treatment. Variable LDEP is log of DEPOSIT.

data beetl e;
input y n deposit trt$;
| dep = | og(deposit);

sub=_n_;
dat al i nes;
3 50 2.00 ddt
5 49 2.64 ddt
19 47 3.48 ddt
19 50 4.59 ddt
24 49 6.06 ddt
35 50 8.00 ddt
2 50 2.00 gbhc
14 49 2.64 gbhc
20 50 3.48 gbhc
27 50 4.59 gbhc
41 50 6.06 gbhc
40 50 8.00 gbhc
28 50 2.00 m x
37 50 2.64 nix
46 50 3.48 nix
48 50 4.59 nmix
48 50 6.06 nix
50 50 8.00 nmix

The following statements fit a logistic regression model to
these data with LDEP and TRT as the explanatory variables.
The LSMEANS statement requests predicted logits for each
treatment level as well as differences and the covariance
matrix. The first three ESTIMATE statements reproduce
the LSMEANS results. The fourth ESTIMATE statement
requests the difference between levels gbhcand mix, as well
as the 90% confidence limits.This request is repeated with
the EXP option added, which specifies that the estimate is to
be exponentiated. The final ESTIMATE statement requests
the test of whether the average of the logits corresponding
to the first two treatments is equal to the logit for their
mixture.

proc gennod dat a=beet| e;
class trt;
nodel y/n = ldep trt / dist = binonial;
Ismeans trt /diff cov;
estimate 'trt ddt’ intercept 1 |dep 1.3859983 trt 1 0 O;
estimate 'trt gbhc’ intercept 1 Idep 1.3859983 trt 0 1 O;

estimate "trt mix' intercept 1 |dep 1.3859983 trt 0 O 1 /exp;

estimate 'trt gbhc-mix’ trt 0 1 -1/alpha=.10;
estimate '1/3(trtl+trt2) - 2/3trt3’
trt 1 1 -2/ divisor=3;

Figure 7 contains the parameter estimates. The model is
adequate with a Pearson chi-square goodness-of-fit value
of 21.2819 and 14 DF (not shown).

Anal ysis O Paranmeter Estimates
Wl d 95%
St andar d Confidence Linmts
Par anet er DF Estimate Error Lower Upper
I ntercept 1 -1.4248 0.2851 -1.9835 -0.8661
| dep 1 2.6958 0. 2157 2.2730 3.1185
trt ddt 1 -3.1305 0.2522 -3.6248 -2.6362
trt gbhc 1 -2.4177 0. 2381 -2.8844 -1.9510
trt m x 0 0. 0000 0. 0000 0. 0000 0. 0000
Scal e 0 1. 0000 0. 0000 1. 0000 1. 0000
Analysis Of Paranmeter Estinates
Chi -
Par anet er Squar e Pr > Chi Sq
I nt ercept 24.98 <. 0001
| dep 156. 21 <. 0001
trt ddt 154. 09 <. 0001
trt gbhc 103.10 <. 0001
trt m x
Scal e

Figure 7. Parameter Estimates

Figure 8 contains the results, which include the estimates,
their differences, and tests of significance.

Least Squares Means

St andar d Chi -
Effect trt Estimte Error DF Square Pr > Chi Sq Covl
trt ddt -0.8189  0.1450 1 31.89 <.0001 0. 0210
trt gbhc -0.1061 0.1361 1 0.61  0.4355 0. 0002
trt m x 2.3116  0.1936 1 142.63 <.0001 -0.0026
Least Squares Means

Effect trt Cov2 Cov3

trt ddt 0.0002  -0.0026

trt gbhc 0.0185 -0.0004

trt m x -0.0004 0. 0375

Di fferences of Least Squares Means

St andard Chi -
Effect trt _trt Estimate Error DF Square Pr > Chi Sq
trt ddt gbhc -0.7128 0.1981 1 12.95 0. 0003
trt ddt m x -3.1305 0. 2522 1 154.09 <. 000
trt gbhc  mix -2.4177 0.2381 1 103.10 <. 000
Figure 8. Least Square Mean Results

Figure 9 contains the ESTIMATE statement results. Note
that the first three estimates reproduce the LSMEANS re-
sults and these estimates are accompanied by a 90% con-
fidence interval. Note that the EXP option produces the
exponentiated estimate for the mixture treatment level.



ESTI MATE St atenment Results

St andar d
Label Estimate Error Al pha Lower
trt ddt -0.8189 0. 1450 0.05 -1.1031
trt gbhc -0.1061 0.1361 0.05 -0.3729
trt mx 2.3116 0.1936 0.05 1.9322
Exp(trt mix) 10. 0903 1. 9530 0.05 6.9048
trt gbhc-mx -2.4177 0.2381 0.1 -2.8094
1/3(trtl+trt2) - 2/3trt3 -1.8494 0. 1496 0. 05 -2.1426
ESTI MATE St atenment Results
Chi -

Label Upper Square Pr > Chi Sq

trt ddt -0.5347 31.89 <. 0001

trt gbhc 0. 1606 0.61 0. 4355

trt mx 2.6909 142.63 <. 0001

Exp(trt mx) 14. 7454

trt gbhc-mx -2.0261 103.10 <. 0001

1/3(trtl+trt2) - 2/3trt3 -1.5563 152.89 <. 0001

Figure 9. Estimate Results

For Release 6.12 of the SAS System, the GENMOD pro-
cedure was enhanced to support Generalized Estimating
Equations (GEE), introduced by Liang and Zeger (1986) as
a method of dealing with correlated data when, except for
the correlation among responses, the data can be modeled
with a generalized linear model.

Correlated data can arise from situations such as

¢ longitudinal studies, in which multiple measurements
are taken on the same subject at different points in
time

¢ clustering, where measurements are taken on sub-
jects that share a common category or characteristic
that leads to correlation

The correlation must be accounted for by analysis methods
appropriate to the data. You model the correlated data
by using the same link function and linear predictor as
in a generalized linear model for the independent case;
you describe the random component by the same variance
function. However, in the GEE approach, you also model
the covariance structure of the correlated measures.

The GEE facilities have also been extended in Version
7. Type 3 tests are now available for model effects, and
the CONTRAST statement now applies to the GEE model
estimates. In addition, the LSMEANS and ESTIMATE
statements can be used for the GEE parameter estimates.

The method of alternating logistic regression estimation
(Carey, Zeger, and Diggle 1993) is now available as well
as models for ordinal response data. The proportional odds
model is perhaps the most popular of these models for
GEE analysis (Lipsitz, Kim, and Zhao 1994) and depends
on modeling cumulative logit functions. The GENMOD
procedure also models cumulative probits and cumulative
complementary log-log functions.

Consider the following SAS data set from Koch et al (1990).
A clinical study conducted at several medical centers inves-
tigates whether active treatment has an effect on respiratory
symptoms, captured as a five point scale from 0 for poor
to 4 for excellent. Other variables include base score, age,
and gender.

data resp;
i nput age base gender $ treat $
center id visit score dichot;

trt = (treat ='a’);
gen = (gender = 'fenmale’);

dat al i nes

391 female p 1101120
391 ferale p 1101210
391 ferale p 1 101 310
39 1 ferale p 1101 420
25 2 nale a 1102120
25 2 nale all022 41
252 male a 1102341
252 male a 1102441
58 4 male a 1103141
58 4 male al1l103 241
58 4 male al1l103341
58 4 male a1l 103441
51 3 female p 1 104 1 4 1
51 3 female p 1 104 2 2 0
51 3 female p 1 104 3 4 1
51 3 female p 1 104 4 4 1
32 3 female p 1 105120
32 3 female p 1 1052 2 0
32 3 female p 1 1053 3 1
32 3 female p 1 1054 4 1
45 3 male p 1106141

The REPEATED statement is where the cluster id is spec-
ified, as well as the working correlation structure. The
LINK=CLOGIT option in the MODEL statement requests
cumulative logits, which, with the DIST=MULT specification
of the multinomial distribution, specifies the proportional
odds model.

proc gennod dat a=r esp;
class id treat gender ;
nodel score = visit trt gen center base /
dist=rmult link=clogit itprint;
repeated subject=id / type=unstr corrw;

run;
Anal ysis Of CEE Paraneter Estimates
Enpirical Standard Error Estimates
95% Confi dence

St andar d Limts Pr >
Parameter Estimte Error Lower Upper Z | Z|
Interceptl -2.6672 1.6827 -5.9653 0.6308 -1.59 0.1129
Intercept2 -1.5543 1.6820 -4.8510 1.7425 -0.92 0.3555
Intercept3 0.2224 1.6998 -3.1091 3.5538 0.13 0.8959
Intercept4 1. 4065 1.7190 -1.9627 4.7756 0.82 0.4132
visit -0.0421 0.0554 -0.1506 0. 0664 -0.76 0.4469
trt -1.7737 0.5503 -2.8524 -0.6950 -3.22 0.0013
gen - 0. 3600 0.6850 -1.7026 0. 9826 -0.53 0.5992
center 1.1326 0. 5592 0. 0366 2.2286 2.03 0.0428
base -0.7664 0.1201 -1.0019 -0.5310 -6.38 <.0001

Figure 10. Parameter Estimates

Since there are five outcomes, four cumulative logits are
being modeled. The model includes an intercept term
corresponding to each cumulative logit and slope terms that
apply to all cumulative logits. This analysis indicates that
treatment and center are influential effects and that baseline



must be included as a covariate.

Analyzing lll-Conditioned Data

Occasionally, you may be faced with badly-scaled or ill-
conditioned data. You may use the GLM or REG procedures
only to find that you get messages stating that the estimation
process can't find solutions. The ORTHOREG procedure
was designed to handle these situations for the regression
setting, and it uses the QR method to produce numerically
precise estimates. This procedure has now been enhanced
to accept a CLASS statement and GLM-like model speci-
fication so that it can handle a broader range of statistical
models. In addition, the results have been upgraded to
include additional statistics.

The following example illustrates the use of the ORTHOREG
procedure with atomic data. In order to calibrate an instru-
ment for measuring atomic weight, 24 replicate measure-
ments of the atomic weight of silver (chemical symbol Ag)
are made with the new instrument and with a reference
instrument (Powell, Murphy, and Gramlich 1982).

data AgWei ght;

St andar d

Par arret er DF Paraneter Estinmate Error t Val ue
I ntercept 1 107. 868136354166 3.0832608E-6 3. 499E7
(I'nstrument="1") 1 0.00001741249999 4. 3603893E-6 3.99
(Instrunment="2") 0 0 . .

Par arret er Pr > |t

I nt ercept <. 0001

(Instrunent="1") 0. 0002

(Instrunment="2") .

Figure 12. Results for Atomic Weight Example

The mean difference between instruments is about 1.74 x
107° (the value of the (Instrument='1") parameter
in the parameter estimates table), whereas the level of
background variation in the measurements is about 1.51 x
10~° (the value of the root mean squared error). The
difference is significant, with a p-value of 0.0002.

The following table displays the ANOVA values certified by
the National Institute of Standards and Technology (1997)
and those produced by the ORTHOREG and GLM proce-
dures.

Model SS Error SS

cert | 3.6383418750000E-09
o 3.6383418747907E-09
G 0

1.0495172916667E-08
1.0495172916797E-08
1.0331496763990E-08

input Instrunent Ag\Wei ght @@

dat al i nes;
1 107. 8681568 1 107. 8681465 1 107. 8681572 1 107. 8681785
1 107. 8681446 1 107.8681903 1 107. 8681526 1 107.8681494
1 107.8681616 1 107.8681587 1 107.8681519 1 107.8681486
1 107.8681419 1 107. 8681569 1 107.8681508 1 107.8681672
1 107.8681385 1 107.8681518 1 107.8681662 1 107.8681424
1 107.8681360 1 107.8681333 1 107.8681610 1 107.8681477
2 107.8681079 2 107.8681344 2 107.8681513 2 107.8681197
2 107. 8681604 2 107. 8681385 2 107.8681642 2 107. 8681365
2 107.8681151 2 107.8681082 2 107.8681517 2 107.8681448
2 107.8681198 2 107.8681482 2 107.8681334 2 107. 8681609
2 107.8681101 2 107.8681512 2 107. 8681469 2 107.8681360
2 107.8681254 2 107.8681261 2 107. 8681450 2 107.8681368

Notice that the variation in the atomic weight measure-
ments is several orders of magnitude less than their mean.
This is a situation that causes difficulty for standard least
squares computations. The following statements invoke
the ORTHOREG procedure to perform a simple one-way
analysis of variance, testing for differences between the two
instruments:

proc orthoreg data=AgWei ght;
class I nstrunent;
model AgWei ght = | nstrunent;
run;

ORTHOREG Regr essi on Procedure
Dependent Vari abl e: AgWei ght

Sum of

Sour ce DF Squar es Mean Square F Value Pr > F
Model 1 3.6383419E-9 3.6383419E-9 15.95 0.0002
Error 46 1.0495173E-8 2.281559E-10

Corrected Total 47 1.4133515E-8

Root MSE 0.0000151048
R- Squar e 0. 2574265445

Figure 11. Results for Atomic Weight Example

Root MSE
cert | 1.5104831444641E-05 0.25742654453832
(@] 1.5104831444735E-05 0.25742654452494
G 1.4986585859992E-05 0

R-Square

The ORTHOREG values are quite close to the certified
ones, but the GLM values are not. In fact, since the model
sum of squares is so small, the GLM procedure sets it
(and consequently R?) to zero. While the GLM and REG
procedures adequately handle most data sets that arise in
practice, the ORTHOREG procedure is a useful tool for the
exceptional occasion where they do not.

Revisiting T-Tests

While the TTEST procedure has been around since, well,
the Statistical Analysis System, that doesn’'t mean that it
couldn’t be improved. The TTEST procedure can now
perform a t-test for one sample, two samples, or paired
observations. The one sample t-test compares the mean
of the sample to a given number. The two sample ¢-test
compares the mean of the first sample minus the mean
of the second sample to a given number. The paired
observations ¢-test compares the mean of the differences
in the observations to a given number. FREQ and WEIGHT
statements have been added, and confidence intervals for
the means, differences of means, and a pooled-variance
are available through the OUTPUT data set.

The new PAIRED statement enables you to test the differ-
ences of pairs of observations, instead of the difference of
means of two groups. The following statements illustrate
the specification:



paired a*b;

/* Perforns t- test on difference A-B. */
paired a*b c*d;

/* Tests differences A-B and C D. */

The CLASS and VAR statement cannot be used with the
PAIRED statement.

For an example, consider the following systolic blood pres-
sure data. Researchers recorded blood pressure before
and after a stimulus was applied.

data pressure;

i nput SBPbefore SBPafter @@
dat al i nes;
121 130 124 131 130 131 118 127
143 134 121 129 144 147 139 140
128 116 127 136 126 130 127 137

run;

The following statements request a paired ¢-test analysis.

proc ttest;
pai red SBPbef ore*SBPafter;
run;

The PAIRED statement is used to test whether the mean
change in systolic blood pressure is significantly different
from zero.

Figure 13 contains statistics for the mean difference.

Statistics

Lower CL Upper CL Lower Cl
Di fference N Mean Mean Mean Std Dev
SBPbefore - SBPafter 12 -7.926 -3.333 1.2591 5.1202

Statistics

Upper CL
Di fference Std Dev Std Dev Std Err M ninum Maxi mum
SBPbefore - SBPafter 7.2279 12.272 2.0865 -10 12

Figure 13. Statistics

Figure 14 contains the value and p-value for the paired ¢-
test. The difference is not significantly different from zero.

T-Tests
Difference DF t Val ue Pro> |t]
SBPbefore - SBPafter 11 -1.60 0.1384

Figure 14. Test Statistic

More Exact p-Values

In recent years, exact p-values have been added for many
statistics in the FREQ and NPAR1IWAY procedures. Ex-
act p-values provide an alternative strategy when data are

sparse, skewed, or unbalanced so that the assumptions re-
quired for standard asymptotic tests are violated. Advances
in computer performance and developments in network al-
gorithms over the last decade have made exact p-values
accessible for a number of statistical tests.

This work continues with Version 7.

Monte Carlo simulation is now available for computing exact
p-values in both procedures; it is useful in some situations
where the default exact algorithms are not feasible. This
is requested with the MC option in the EXACT statement,
and related options include the SEED=, ALPHA=, and N=
options. The MAXTIME option in the EXACT statement
specifies a time at which to quit if exact computations are
not finished.

In addition, PROC NPAR1WAY has been updated to in-
clude:

¢ nonparametric tests for scale differences Siegel-
Tukey, Ansari-Bradley, Klotz, Mood

e exact p-values for the above
e exact p-values for the Kolmorgorov-Smirnov test
¢ FREQ statement

Also, a new SCORES=DATA option enables the user to
input raw data as scores, giving the user a lot of flexibility.
This option applies to both asymptotic and exact tests.

The FREQ procedure has been enhanced with a TEST
statement for tests of the MEASURES and AGREE statis-
tics. In addition, the new BINOMIAL option requests the
binomial proportion, standard errors and confidence inter-
vals, and a test of whether it is equal to 0.5 (or another
specified value). Both asymptotic and exact tests are avail-
able.

SAS users may also be interested to know that SAS/IMLY
software now includes three new routines for robust re-
gression and outlier detection. The LMS (Least Median
of Squares) and LTS (Least Trimmed Squares) routines
perform robust regression. They detect outlier and perform
least squares regression on the remaining observations.
The MVS (Minimum Volume Ellipsoid Estimation) can be
used to find the minimum volume ellipsoid estimator, the
location and robust covariance matrix that cau be used
to construct confidence regions and to detect multivariate
outliers and leverage points. Refer to Rousseeuw (1984)
and Rousseeuw and Leroy (1987) for details on robust
estimation theory and methods.

Growing Confidence Intervals

In response to many requests from users, a number of
procedures now provide additional support for confidence
limits. For example, in the GLM procedure you can specify
the CLPARM option in the MODEL statement to request
confidence limits for the parameter estimates (if the SO-
LUTION option is also specified) and for the results of all
ESTIMATE statements. Likewise, in the REG procedure



you can specify the CLB option in the MODEL statement to
request confidence limits for the parameter estimates.

The UNIVARIATE procedure now computes confidence lim-
its for a variety of distributional parameters. You can request
a table of confidence intervals for the mean, variance, and
standard deviation by specifying the CIBASIC option in the
PROC statement. You can request confidence intervals for
percentiles assuming normality with the CIPCTLNORMAL
option, and you can request distribution-free confidence in-
tervals for percentiles with the CIPCTLDF option. Refer to
Hahn and Meeker (1991) for details of these methods.

The following statements illustrate these options using the
batch data of Hahn and Meeker (1991). Note the use of the
ODS SELECT statement to display selected tables.

dat a batch;
i nput Anount;
dat al i nes;
1.49
1.66
2.05
58.11
run;
ods sel ect Basiclntervals Quantil es;
proc univari ate data=batch
ci basic cipctlnormal cipctldf;

var Anount;
run;

The UNI VARI ATE Procedure
Variable: Anount

Basi c Confidence Limits Assuming Normality

Par aret er Estimate 95% Confidence Limts
Mean 12.9745 10.87392 15.07508
Std Deviation 10. 58646 9.294988 12.29803
Vari ance 112. 0732 86. 39681 151.2416

Figure 15. Confidence Intervals

Figure 15 displays the basic confidence intervals. The confi-
dence intervals for quantiles assuming normality are added
to the default Quantiles table, as displayed in Figure 16.

Quantiles (Definition 5)

95% Confidence Linmts

Quantile Estimate Assuming Nornality

100% Max 58.11

99% 55.77 34. 03228972 42.181539031
95% 31.48 27.51018657 33. 991855510
90% 27.46 23. 98135486 29. 676202639
75% B 17. 60 17.93944898 22.602019948
50% Medi an 9.23 10. 87391576 15. 075084236
25% Q1 5.18 3. 34698005 8. 009551024
10% 3.25 -3.72720264 1.967645138
5% 2.49 - 8. 04285551 -1.561186566
1% 1.57 -16. 23253903 -8.083289719
0% M n 1.49

Figure 16. Confidence Intervals Assuming Normality

Likewise, the distribution-free confidence intervals for quan-
tiles, together with their corresponding ranks and coverage
probabilities, are added to the Quantiles table.

Quantiles (Definition 5)

95% Confidence Linmts

Quantile Di stribution Free LCL Rank UCL Rank
100% Max
99% 37.32 58.11 98 100
95% 28.28 58.11 91 100
90% 24.33 33.24 85 97
75% B 14.17 23. 66 67 84
50% Medi an 7.81 12.93 41 61
25% Q1 4.09 6. 55 17 34
10% 2.24 4.04 4 16
5% 1. 49 3.23 1 10
1% 1. 49 2.05 1 3
0% M n

Quantiles (Definition 5)

Quantile Cover age

100% Max

99% 55. 46

95% 96. 59

90% 95. 23

75% B 95. 13

50% Medi an 95. 40

25% QL 95. 13

10% 95. 23

5% 96. 59

1% 55. 46

0% M n

Figure 17. Distribution-Free Confidence Intervals

Robust Methods

The new STDIZE procedure standardizes one or more nu-
meric variables in a SAS data set by subtracting a location
measure and dividing by a scale measure. A variety of loca-
tion and scale measures are provided, including estimates
that are resistant to outliers and clustering. In addition, the
standardized values can be multiplied by a constant or have
a constant added to them, or both. Missing values can
be replaced by the location measure or by any specified
constant.

SAS users may also be interested to know that SAS/IMLY
software now includes three new routines for robust re-
gression and outlier detection. The LMS (Least Median of
Squares) and LTS (Least Trimmed Squares) routines per-
form robust regression. They detect outliers and perform
least squares regression on the remaining observations.
The MVS (Minimum Volume Ellipsoid Estimation) can be
used to find the minimum volume ellipsoid estimator, the
location and robust covariance matrix that can be used
to construct confidence regions and to detect multivariate
outliers and leverage points. Refer to Rousseeuw (1984)
and Rousseeuw and Leroy (1987) for details on robust
estimation theory and methods.

Other Work

Many other statistical procedures have been enhanced in
one way or another. The PLAN procedure now generates
lists of permutations and combinations. Smoothing splines



have been added to the TRANSREG procedure. And, vari-
ous minor options have been added to several procedures.

Conclusion

The statistical capabilities of the SAS System continue to
grow with Version 7 of the SAS System. The integration
of ODS into all procedures makes results management
facilities quite powerful. The addition of confidence intervals
in several procedures gives users the type of information
they have been requesting recently. New production and
experimental procedures provide users with new tools for
data analysis. The documentation for SAS/STAT software
is also undergoing changes and a revised set of manuals
will be released with Version 7. Documentation for the
experimental procedures will be available in a separate
technical report. In addition, documentation will also be
available online for ready reference. The URL for the R
and D web pages is http://www.sas.com/rnd/ and these
pages contain up-to-date information about the statistical
products.
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