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Abstract
Two simple, elegant DATA steps are used to generate all possible dynamic regression models from a constrained set of
explanatory variables, lags, and an ARIMA procedure.  From a complete list of all models ranked by “goodness of fit, ” the best
fitting models are selected. These candidate models are validated by comparison to the results of time-tested, existing models, a
battery of significance tests, and judgment.

Combinatoric dynamic regression (CDR) focuses on generating all possible models (which PROC ARIMA can then evaluate). 
CDR also provides a method to assess the PROC ARIMA’s evaluations in order to select candidate models. CDR is a purely
empirical method enabling data to speak for itself. CDR provides knowledge discovery. It does not provide a method to solve
any particular dynamic regression model.

This paper provides instructions on how to:

• constrain the number of possible models to a manageable size
• generate the PROC ARIMA ESTIMATE  statements for each model with two DATA steps
• validate the models with the highest rank. 

To use CDR, familiarity with dynamic regression and PROC ARIMA is required. Also, existing, proven models are needed to
ensure that highly ranked CDR models are consistent with proven models.

Incentives for using this procedure:

• Easy to implement in 32 statements!
• Automatically establish a statistical benchmark.
• Exploration and knowledge discovery - Identify potentially predictive non-structural ARIMA models.
• Cross-validate existing structural models.
• Fine-tune the lags in complex dynamic regression models as an alternative to State Space Modeling.

Because CDR is automated, you can achieve these gains with only a modest expenditure of resources and research time. It is a
brute force method. CDR is a knowledge-discovery tool and not an expert system that will magically find the “best” model.
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While CDR is a powerful tool, please proceed with the greatest caution.  We will discuss the need for caution here only
briefly and take it up in more detail in the section labeled “Statistical Precautions. ”

Researchers are advised to proceed with available theory and previous results before using this approach.

Finally, this method requires cutting and pasting large amounts of text from a word processing editor into a SAS DATA
step.

 Definitions

Dynamic Regression: A linear regression model that often combines an ARIMA procedure with explanatory variables (or their
lags). If the explanatory variables are lagged, they are often referred to as leading indicators.

Y is cointegrated with a set of explanatory variables {X} (and their lags) whenever there exists a linear regression of Y against
{X} whose residuals are stationary at equilibrium. Cointegration requires only that the residuals are stationary. It does not require
Y or {X} to be stationary. In a dynamic regression that relies on a moving average, the models constructed from only the
explanatory variables and the AR term must be cointegrated.

SBC (the Schwartz Bayesian Criteria): −2 ln(L) + ln(n) k where L is the likelihood function based on the residuals, n is the number
of residuals, k is the number of free parameters. We will use the SBC as the measure of goodness of fit. ” It has no statistical
measure for erroneous inferences and implications. In short, it has no alpha statistic. Hence, while this is an excellent tool for
ranking numerous models, it is a very poor tool for measuring the reliability of any particular model. You will need to apply other
methods, statistical methods to measure the probability of any erroneous significance of a particular model.

Model Complexity: The number of estimated parameters.

Alpha: The theoretical probability that a statistical test demonstrates a good fit or a fit much better than mere guessing
but in fact has given you bad advice. Most statistical tests provide an alpha default to 5%. An alpha of 5% implies that
each model deemed significant by this test has a 1/20 (5%) probability of an incorrect inference.

 Alternatives to CDR

PROC STATESPACE or Bayesian VARS will also attempt to find an optimal subset of explanatory variables with suitable lags
and will account for interaction between the variables as well. When unable to constrain the number of explanatory variables and
their lags to a reasonable size, then the researcher should consider other search methods such as genetic algorithms, genetic
programming, simulated annealing, or cellular automata.
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Introduction
Combinatoric dynamic regression is the union of combinatorics and dynamic regression. With properly defined constraints, it will
automatically generate and run all possible dynamic regression models, exploiting the incredible speed and reliability of the SAS
DATA STEP and PROC ARIMA in SAS/ETS software.  Reader familiarity with ARIMA concepts is assumed.

The Six Stages of Combinatoric Dynamic Regression

1. Define constraints
• Select a meaningful set of explanatory variables
• Define maximum lags for the explanatory variables
• Define maximum lags for ARIMA terms

2. Specify the model format
3. Generate the list of possible models with an identification number for each model (for easy reference)
4. Evaluate the ESTIMATE statements representing the possible models with PROC ARIMA
5. Create a Ranked List whose fields are each model’s identification number and the resulting SBC of the estimated model; this

list is sorted by SBC.
6. Validate and diagnose interesting candidate models; compare the CDR results to univariate BJ ARIMA and existing, time-

tested model results.
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Statistical Precautions

 Constraints - Limiting the Potential Complexity of the Models

Without adequate constraints on the number of explanatory variables and their lags and the complexity of the ARIMA component,
the number of combinations of possible models will increase explosively. It may take considerable skill to provide suitable
constraints. To reduce the complexity of a system, the researcher may apply principal components or the more powerful
projection pursuit neural net. If the researcher is unable to constrain the complexity of the models, then it is advisable to try genetic
algorithms, cellular automata, or simulated annealing.

Constraining the model complexity is normally beneficial, but for CDR, it is essential. This requirement has several advantages in
forecasting: parsimonious models generally outperform complex models; simple models are easier to understand and are easier to
justify; and with a simple model, there is less risk of collinearity, which may bias your coefficients and statistical tests. To measure
collinearity, use the COLLIN option of the FIT statement in the MODEL procedure.

 Detecting Statistical Artifacts – Avoiding Bad Models

Process (P) A system with multiple time-series inputs X1, … Xn  and one time-series output Y. The output
Y is often called the response variable. The inputs, X1, … , Xn, are called explanatory
variables. When past values of the response variables are used as inputs, they are called
autoregressive / moving average terms in the model denoted Y-1, Y-2, Y-3 where –1 indicates
a lag of 1 time period, –2 indicates a lag on Y of 2 time periods and so on.

System An interacting or interdependent set of variables forming a unified whole. This paper will deal
with systems with only a single response variable and will emphasize the interaction and
dependence of the response variable to remaining variables, often referred to as explanatory
variables. Researchers requiring a broader treatment of systems, where all of the variables can
interact and effect the behavior of other variables, might consider PROC STATESPACE,
possibly PROC SYSLIN, or even simultaneous, stochastic partial differential equations. While
identifying the system, analysts must determine which variables to include, deeming others as
either unimportant, impossible to measure, or omitted for theoretical reasons.

System Context This set of excluded or even unknown variables determines the system context. In other words,
they are variables not included in the model. Excluded variables found in the context may have a
powerful but unknown impact on a system. For example, changes in the policy of a presidential
regime could have a dramatic impact on a relevant sector of the economy. However, this
variable may be impossible to measure and predict.

Domain (D) Let d be vector whose components n+1 components are Y, X1, …, Xn. The domain D is the
set of all naturally occurring or possible d’s. Every possible sample is a subset of D. The phrase
“naturally occurring” implies that each variable has a normally occurring range, an expected
maximum and minimum under suitable or normal conditions. The vector space formed by D will
probably be in the shape of a hypercube whose limits on each side are set by the range of each
component variable.

Non-Random Process (NP) A system whose output produces predictable results given certain inputs. A system whose
uniform behavior over its Domain D can be portrayed by a smooth curve algebraically
represented by an ARIMA-X equation.
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Random Process (RP) A process whose output is a random series of numbers regardless of the inputs. A random
process may produce samples that temporarily appear to contain a pattern. Statistically
significant models can be based on such anomalous samples. These models, lacking any
predictive value, are sampling artifacts. They are the results of bad data, bad sampling design, or
just bad luck.

Models Linear equations representing an underlying, repeatable process that generated the given
sample. Thus, an adequate model must explain and predict most possible samples in its domain.
In other words, we are trying to generalize from predictable behavior in a given sample to a
model that fits an underlying, smooth pattern found in the sample and then use this derived
model to fit (in some sense predict) the data found in other relevant samples.

Alpha Error - Type One
(Alpha-1)

Given a sample S, run a Random Walk test on the sample output Y to make certain there are
patterns worth modeling. We declare a sample to be non-random if there is less than a 5%
chance that a random process could produce the non-random patterns found in sample S.
Alpha is the probability that a statistical test purporting to demonstrate non-random behavior is
in fact wrong. Many artifacts exist in data sets mistakenly categorized as non-random. In most
research situations, there is a 1/20 chance that a statistically significant test is in truth the result of
a random process and hence an artifact.

If a multivariate process P is non-random, then the researchers try to model the process.
The model assumes: if the pattern occurred in the existing sample, it will extend across most other relevant samples. This lends the
model predictive power. In other words, the model is derived over the local behavior of one sample and applied globally to all
other possible samples. We hope a model that fits a given sample extremely well is more likely to fit other samples as well.

Statistical Artifacts

An artifact is a model that coincidentally fits only the data found in sample S but does not represent the underlying, non-random
process that generated S. An artifact often provides excellent fits only on the given sample data but fails on all other samples
generated in future activity. Also, a battery of significance tests may all give misleading results. Models whose assumed reliability
rests upon misleading significance tests are artifacts. In other words, by coincidence, a spurious model fits the sample data so well
that the analyst is mislead into believing the model represents the underlying process. Statistical artifacts are due to the inescapable
uncertainty found in most systems.  We must accept some level of alpha that a given pattern in a sample is not a phantom of a
random process. Other causes for statistical artifacts can be model over-specification, collinear explanatory variables, regime
shifts, outliers and interventions, categorical data, highly clustered around specific behavior, unstable ARIMA terms, insufficient
sample size, and the laws of chance.

Apparently, there is no escaping uncertainty

For example, weather is a chaotic system. Even a hard laboratory science such as quantum physics has the “uncertainty principle”.
The great physicist Nils Bohr concluded that the ultimate, underlying reality of nature is unknown and unknowable. In
mathematics, the only deductive science, uncertainty abounds in Zorn’s Lemma, Godel’s Theorems, and Cantor’s work on infinite
sets.

In real-world applications, researchers usually do not have the luxury of scientific laws. Without prior experience or easily
repeated and strictly controlled laboratory testing, an artifact may easily go undetected.
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Early letters by Bayes explore the philosophy of science. He asks, “Are poor forecasts produced by bad models or merely poor
measurements? If rules are made to be broken, then modeling assumptions are certain to be ignored. Or worse, the assumptions
by which regression was derived are mathematical conveniences driven only for algebraic simplification and not based on reality. ”

Einstein complained, “Deterministic processes may appear to be random because of missing variables.” In practice, it may be
impossible to account for all relevant variables.

Even in controlled experiments, lack of time or funding may lead to insufficient sample size, errors in measurement, or data entry.

However, in the face of insufficient data and the risk this implies, the analysts should rank models by their statistical significance.
After all a model with strong statistical significance has a better chance of being reliable. Hopefully, the sample data is truly
indicative of the average sample in the domain and likewise the model represents a pattern found in the test sample that extends to
most other relevant samples. In other words, the model fits the behavior of the process almost everywhere.

The better a model represents the past behavior of a system, the more likely it will produce better forecasts than models that do
not fit the existing data. Major assumption: context of the system has not changed radically from the past to the future. We are
relying on uniformity of behavior of the system over its domain. This problem of uniformity over its domain plagues all models: the
behavior of dynamic systems change frequently. Thus, old models and the new ones are all at risk. We endeavor, therefore, to
select the strongest models tested upon samples including the most recently collected data.

Whether you select one candidate model from a short list of hand-picked candidates or you select one model from a complete list
of models generated by CDR, the problem of statistical significance and artifacts remains the same. You don’t know if current
sample data is indicative of the underlying process driving the market. You don’t know how the system and its processes will
change in the future. Old models deemed reliable may suddenly fail while new models viewed with distrust may later produce
effective forecasts. Uncertainty prevails. No one knows enough to predict the future. In addition, ARIMA-X, our model type,
may not be appropriate as a forecasting method for a process. With only one sample, only one time series, it may be impossible to
determine whether a process is totally random, chaotic, or nonlinear. Thus, there is also uncertainty concerning the adequacy of
the modeling methods used.

This uncertainty applies to every candidate model regardless of the length of the list from which it was selected. Statistical
significance of model adequacy is based strictly on sample data and the particular candidate model you have selected to represent
patterns revealed by that data. Moreover, that statistical significance test has a 5% chance of being wrong. All candidate models
must be based on the same sample data and must be fairly assessed by the same tests for adequacy and the measures for alpha.
These test results are independent of all other models under consideration. Models must be tested separately on their own merits.
Any significant test on any model has that same 5% chance of being wrong.

With CDR, we are flying strictly by instruments, without a controlled laboratory experiment or scientific theory. Similarly, if your
airplane is out of fuel and there is a dense fog surrounding you, then by instruments you must land. If you are a small private
investor trading options in 15 minute intervals, then by statistical instruments you must decide.

The uncertainty is present regardless of the size of the list of possible candidates. As noted, even models based on theory contain
risks. How do analysts with a theory reconcile a sample that theoretical models fail to fit or explain? Most theories depend on
assumptions. Does the sample and the model completely satisfy the conditions?

CDR can dramatically improve our chances of finding reliable models

Does the increased number of models generated by CDR assure better reliability?
CDR takes into account all possible models. CDR ranks the models by goodness-of-fit and measure of statistical adequacy.
Because CDR produces a ranked list of all possible models and ranks them by SBC, you need to consider only the top
performers, say the best 10 or 20. Because, you are considering all possible models, you are very likely to find new and more
adequate models. Even with a theory in hand, you can find better models that also satisfy the theory. Because the long list
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produced by CDR contains all possible shorter lists of models generated by non-CDR procedures, the strongest candidate
models generated by CDR are likely to be more accurate and have stronger significance test than any model found in an arbitrary
short list of models. Certainly, it will produce models at least as good as your favorite time tested model or panel of models or a
short list of hand picked models because CDR’s long list will contain all of these cases as subsets. You will consequently learn
more about the system you are modeling, and it guarantees that you will be considering the most significant models. There will be
no trade off between quantity and quality. CDR gives you both.

Artifacts viewed in the light of inherent uncertainty in statistical significance testing

If a significance test produces a positive result, there is an acceptable risk of 1/20 chance that the test is wrong. Hence, selection
by a significance test exposes us to the risk of selecting seemingly reliable models, phantoms of chance.

It has been argued by certain fellow economists that more models means more artifacts. True.

With most complex, dynamic systems, theory is not strong enough to specify a “correct” model or even determine if a highly
ranked model may be correct. That is, most applications do not have the luxury of physical laws. This is especially so in financial
and econometric models. Thus, we must rely on statistics, what the data can tell us, despite the flaw of acceptable risk of
misleading test results.

Also, CDR relies entirely on empirical results; that is, the data and only the data speaks for itself. You can always eliminate highly
significant CDR models because they do not conform to current economic or other scientific theory.
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 EXAMPLE

CDR can easily generate 20,000 candidate models. With a 1/20 chance of false positives (ALPHA=.05), there may be 1,000
statistical artifacts scattered throughout the complete list of generated models. Because you will be selecting only the top fitting
models, there is a better chance that these will not appear in the 10 “most significant” models. Artifacts usually do not adequately
fit the sample data and possess strong significance tests. However, there can be no guarantee.

The ranking method used in this paper, SBC, has no significance test, unfortunately. There is no measure of the probability that a
top performing candidate is actually an artifact. For this reason, use a battery of significance tests to gauge the probabilities of
spurious, highly ranked models.

For example, let y be a dependent variable and x1−x20 be possible independent variables. Constrain the models to a linear
equation of one variable and a constant. The list of possible models is

Y=A1*X1+B1;
Y=A2*X2+B2;
Y=A3*X3+B3:
…
Y=A20*X20+B20;

The model selection criteria could be as follows: rank the models by t score on Ai (where i runs from 1 to 10) and select the two
models with the highest t scores, models 1 and 2. Suppose both t-tests suggest an alpha less than .05 (there is only a 1/20 chance
of an incorrect conclusion).

For convenience, suppose the models with the highest t-scores are
Y=A1*X1+B1   and   Y=A2*X2+B2.

A t-test with an alpha of .05 means that the process generating the data was actually Y = B1, that is A1 is actually equal to 0.
Because A1 = 0 has an empirical alpha of only 5%, this is an artifact. The odds of the t-test being wrong is 5%. The chances of
B1 equalling 0 is 5%. The test implies that B1 is most likely not zero. There are a lot of plausible, non-zero coefficients for the
linear model. Linear regression merely solves for the most likely coefficient fitting the data. A significant t-test does not say that A1
is the exactly right coefficient. Instead, it says, the coefficient A1 is more likely to predict the behavior of Y based on the behavior
of X1 plus a constant (referred to above as B1). There is a 5% chance the t-test is wrong. That is, the underlying process
generating the data is Y=B1, where actually A1 = 0. It does not say that there is 95% chance that A1 is exactly right. It merely
implies that it is extremely unlikely for A1 to equal 0.

If the second model, Y=A2*X2+B2, also possesses a t-score whose alpha is .05, then the chances of A2 actually being zero is
5%.  The number of candidate models with t-tests with an alpha less than or equal to .05 does not change the probabilities on any
one model being an artifact. The t-test takes each model and compares it to the evidence. Its merits are considered independent
of the other models under consideration. Their existence is irrelevant.

Now suppose we increase the number of possible models to 200 linear models of a single explanatory variable:

Y=A1*X1+B1
Y=A2*X2+B2
Y=A3*X3+B3
…
Y=A198*X198 + B198
Y=A199*X199 + B199
Y=A200*X200 + B200;
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The list of possible models in the prior example is a subset of the list of possible models in this example. Thus, we must produce
results at least as good as those found in the prior example.

Suppose we select models whose t-score on the linear coefficient must have an alpha less than or equal to .05. How many
candidates will we get? At least two (from the previous example) and probably more.

Suppose, out of these 200 models, there are now four candidates. This does not imply that the possibility of having an inadequate,
incorrect model is double the chances of the previous example, which had only two candidate models. Each model, based on its
own merits, has the same statistical significance, an alpha of .05.

Actually, a larger list of candidate models increases our chances of picking a more adequate model. Some of the candidates may
actually have better fits; they may have coefficient t-tests whose alpha’s are much less than .05. Some may have alphas of only .01
and are therefore more significant. Note: Highly significant top-ranked models are less likely artifacts and more likely reflect the
process generating the sample data.

Also, new candidates with excellent significance tests may suggest models previously unsuspected by results found with a smaller
base of models.

Therefore, doubling the size of the list of possible models does not double the chances of selecting an incorrect model. Doubling
the list of possible models may, however, double the chances for statistical artifacts to appear in the list. The significance test
applies to each candidate independent of all other models. We select the models that are most significant. The length of the list
increases our chances of finding the candidates with the highest individual significance.

The test is applied to each model. The test is independent of all other models under consideration. The more models, the better
your chances of finding a better fitting model, a model with better significance tests. If the model you select has a t-test with an
alpha of .01, it doesn’t matter if you selected your model from a list of 10,000 candidates or 10 candidates. The probability of
your selected model having a non-zero coefficient remains .01. You judge each model upon its own merits.

A large list of possible models is more likely to contain better fitting models than a subset of this list.

As a strictly empirical method, CDR relies entirely upon patterns within the data. The resulting PROC ARIMA estimates of each
model’s coefficients are the most likely estimate given a sample of data and a model assumption such as linearity of the
underlying system. Such estimates tend to minimize the errors between the fitted and actual values. However, “most likely” does
not imply exactly correct estimates. In fact, it implies nothing about correctness of the estimates representing the underlying
process generating the sample data. The most likely estimates merely outperform all other estimates by a goodness-of-fit criteria
such as the Mean Squared Error or the SBC.

However, every model is a potential artifact whether we choose it from a short list of only 10 models or a long list of 20,000.
Given a specific type of model, suppose 10% of the models are artifacts. Hence, in a short list of 10, there may be 1 artifact,
whereas in a long list of 20,000, there may be 2,000 artifacts. On the other hand, both lists may contain no artifacts or all artifacts.
There is no way to know for certain.

The long lists afford you more protection. The long list contains all short lists. Thus, all artifacts in the short list will appear in the
long list. If an artifact also produces strong significance tests, you are more likely to select it from the short list. The long list is
likely to produce models with goodness of fit and significance tests better than the artifact selected from the short list. Therefore,
the best performing models will perform at least as well and probably substantially better then models from any short list.

We can use the significance tests to approximate the probability of an artifact in top performing models.
Given the model: y = a * x + b, we want to test the probability that a > 0 is not an artifact. This test is called a hypotheses test or
a significance test. The process pretends the value for a = 0, that is, x has no real effect on y. So, we assume a = 0 and use a t-
test to compute the probability that the odds that the coefficient “a” does not = 0 could occur by chance giving a actually = 0.  If
the odds of this occurrence for this data sample are low enough, we accept the alternate hypotheses, that is, a does not = 0, x has
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an impact on y. Note: When the probability that a does not = 0 is low enough, we reject the null hypothesis. The question is, what
odds are low enough to justify accepting that “a” is probably not equal zero. The default is usually 5%. That is, given the
underlying process really has an “a” = 0 but the model and its associated significance test are not zero, we accept the fact that “a”
does not = 0. We say that the odds are too low for this data sample to be generated from a process whose “a” actually does = 0.
We are accepting a 5% chance of being mistaken. This probability of being mistaken is called the alpha, and the alpha is the
probability a candidate is an artifact.

A large number of models will generate more high performing models whose alpha is less than 1%. This means, a is not equal to 0
and the significance test implies that the odds of this data being generated from a process whose A actually = 0, is only 1%. There
is only 1 chance in 100 to draw a sample form this null process that produces a significant A. This occurrence is highly unlikely so
we usually accept the hypotheses that A does not equal zero.

Again, large samples and more models simply reduce the size of the alpha, the chances of an artifact.

Suppose we accept any model in our list whose alpha is less than 5%. Then out of each 20 models (deemed significant), we run
the risk of accepting an artifact. If our list is short, say 20 models, then there may be one artifact found in this list. If we generate
20,000 models and accept candidate models with an alpha < 5% then there may be 1,000 artifacts, models that test well and fit
well.

Hence, CDR, which produces lists of at least 20,000 alternative models, will produce more artifacts than a short list of only 20
models. If so, why use CDR?

The more models you generate, the lower the alpha is likely to be. A list of 20 may generate a model whose alpha is .05 but a list
of 20,000, which will probably locate all of the good fits, may generate many alphas < .05, such as .01 or .001. Significant fits like
these are extremely unlikely to be artifacts.

A longer list of candidates is likely to reduce the alpha. This is a key benefit of CDR. We see all models and select those with the
best fits and the lowest alphas. Therefore, our top performing candidates are least likely to be artifacts.

The ARIMA regression models try to pick the most likely parameter estimates that minimize the total error between the model
predicted values (fitted) and the actual values. The closer the total of the absolute fitted values agrees with the actual values, the
better the model explains the sample data, and the more likely the model truly represents the process driving the sample data
(assuming the sample is indicative of the underlying process). In most ARIMA algorithms, the absolute difference between the
fitted and actual all have equal weights. If the actual data has several outliers, huge deviations from the underlying trend, the more
likely that artifact models will be accepted.
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First, graph the actual data. Examine them for regime shifts and huge outliers. If so, you can add indicator dummy or intervention
variables to represent these severe, abrupt deviations from the underlying pattern. For example, if a huge deviation occurs at point
18, then you can add a dummy variable that is all zeros except at point 18, where it is a 1. This will alleviate the powerful biases
outliers exert on model significance tests and goodness of fit. Frequently, this simple technique will force almost all artifacts from
consideration as candidate models. Their significant tests and goodness of fit will become inadequate.

Measures of goodness of fit measure how closely the fitted values approximate the actual values. The sum of the differences
between the fitted and actual values is called the residuals. Graph the residuals. Are the differences, the individual residuals,
uniformly tight across all cases of the sample? Are there small isolated segments where the residuals are tight and vast areas where
they are not? This can indicate a regime shift where the model fits under certain circumstances and fails utterly in most other
circumstances. This model may be an artifact or indicate the need for dummy variables.

Replacing the R-square is the more elegant SBC. The time series could be a non-recurrent string of random numbers. The model
may select too many parameters. The more parameters used, the tighter the fit, generally, and the better the significance tests. In
polynomial regression, it is possible to fit even a series of random numbers by increasing the degree of the polynomial, the number
of model parameters. The SBC penalizes models for complexity, that is, the number of parameters. It favors simpler models.

The SBC takes into account the maximum value for a likelihood function (measured by the residuals errors), the sample size
(always an asset), and the number of parameters used in the model (always a deficit). The SBC has proven more robust than the
mean square error (the simplex goodness-of-fit models) and the adjusted R-square. The SBC allows you to compare models in a
long list of models with the top performing models having the lowest SBC. Generally, a model with a low SBC is much less likely
to be an artifact than a model with a high SBC. SBC ranking of long lists will select the most robust and reliable models. A short
list may not even include the best models.

In summary, better models have higher significance tests, lower sum of squared residuals (or higher goodness of fit), and lower
SBC scores. The more models the better. A long list is more likely to contain a model representing the underlying process than a
severely limited short list.

Suppose revenues are actually dependent upon and generated by interest rates and Gross National Product. Suppose you opt for
a short list, leaving out GNP. Hence, this short list will never completely explain the data or its underlying generating process.
CDR will include models using interest rates but not GNP. That is, its long list will subsume the possible shorter lists, lists using
fewer possible variables.

The CDR generates models using all combinations of all relevant variables. No robust models are left out by accident. The CDR
includes all shorter lists. If you have considerable knowledge on a process, your resulting short list will be included in the CDR.
Also, the combinations of lags on explanatory variables and ARIMA structure can be overwhelming. CDR will consider all
possible lag structures automatically. Again, you consider all models while eliminating the possibility of missing many valid models.
Because the CDR lists all possible models, the models with the best goodness of fit and the fewest estimated parameters will be at
the top. A short list may miss some of these options and be less robust or valid.
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The longer CDR list may also point out strong models worthy of further study. Most models have thousands of combinations of
explanatory variables and lags.

Probably, you are forecasting the same process frequently. Compare your new models to your tried-and-true models. Do your
new candidate’s forecasts agree with the time-tested models? If the new models do not concur, then keep them separate and test
them on paper for an extended period of time. Make the new model prove itself.

Final note: Whether you use only one model or 10,000 models, the risks are exactly the same. CDR insures you are not missing
out on models with greater reliability and predictive power.

Bad Data Can Produce Bad Artifacts

Insufficient sample size often leads to statistical artifacts. A small sample may not be indicative of the normal behavior of a
process. A single sample out of millions of possible samples may be a fluke, a rogue if you will. Bad samples produce bad
artifacts.

Biased sampling strategies will also lead to abnormal samples by design. Hence, any model fitting this sample may not fit the data
in most other (normal) samples.

Cluster sampling with a poor sampling strategy may lead to very dense data structures with highly localized information, which in
turn often lead to poor generalizations about the process’ global behavior. For highly clustered data, the resulting model usually
does not extrapolate beyond the sample.

Outliers are anomalous points of data. They can arise from data entry error, bad news, or surprising economic statistics. Because
the regression tries to minimize the square of residuals, outliers, which stray far from the underlying pattern, will have the highest
residuals. The algorithm will place more weight on residuals associated with outliers. The model may fit the outliers better than the
remaining data. Outliers are likely causes of  artifacts. A good model best represents the normal behavior of the system. Outliers
may bias that focus toward the abnormal behavior often due to exogenous factors.

We assume a system behaves uniformly over time. It must be consistent and have a smooth, underlying trend. By the Central Limit
Theorem, most samples will cluster around the mean system behavior and these samples most likely produce models that best
represent the system’s average behavior. When a system’s structure and behavior change abruptly, this change is called a regime
shift or an intervention. Without taking precautions, our single model may attempt to fit two different patterns of behavior. In most
cases, the model will produce a weighted average of the separate models representing each regime. The weights are determined
by the percentage of the sample found in each regime. Such compromised models are usually inadequate and also produce poor
forecasts.
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This section discusses detection or avoidance of artifacts. Repeated sampling is the best protection. If we cannot acquire new
samples and the original sample is deemed large enough, then we can run the model against sub-samples. These schemes are
called jack-knifes and bootstraps. Their use is controversial and they will not be discussed further.

Artifacts can also fail to accurately model subsets of a given sample.

Leave out the last four points and use the model on the remaining data to predict the known but missing points. You could also
repeat this process by reversing the order of the time series and rerunning this test. Purportedly, adequate models should be able
to closely approximate or predict the missing values in either direction because we must assume the underlying process has not
changed over time.

SAS/ETS PROC ARIMA provides an additional, powerful tool. Researchers can also use the back-forecasting option BACK. 
For example, if you specify a LEAD option equal to four time periods to be forecast, you could instruct PROC ARIMA to start
forecasting before the end of the input data. This simulates forecasting data, allowing you to measure the model’s performance
against known outcomes. Compare forecasting results with the equal BACK and LEAD values of existing models and candidate
models.

 A Suggested Battery of Significance Tests

To evaluate a candidate model from the CDR list, test the residuals for model adequacy. That is, test how well the model accounts
for the behavior of the dependent variable, with the Ljung-Box Q test, the Random-Walk RW test, the Generalized Durbin-
Watson test. Plot the AFC, IAFC, and PAFC.  They should all decay rapidly to values statistically  equivalent to zero, that is,
autocorrelations of the residuals exceed +/- 2*sqrt(T), where T is the sample size.

The Ljung-Box, one of the most widely used significance tests for model adequacy, examines the residuals over time. It tests for
departures of the error’s ACF (auto-correlation function).

AutoReg provides the RW and higher order Durbin-Watson diagnostics.

The SBC balances goodness of fit against simplicity. More complex models with more estimated coefficients are penalized more
heavily than simpler models. However, parsimony is a principle for model selection, not a physical law. The underlying system may
require a complex representation. Hence, check candidates ranked by SBC against the same list of models ranked by the Mean
Squared Error (which is purely a measure of goodness of fit without regard to parsimony).

Check the R-squared, the percentage of the variation in the dependent variable explained by the model against expected or
required forecast accuracy.

Compare the coefficients and lags of each input variable in the new candidate model against corresponding coefficients and lags in
existing models that are time-tested or based on economic theory. Compare the SBC of the most reliable existing models and the
best fitting model found from CDR.

Use the t-test to measure the statistical significance of each coefficient of the candidate model. All of the coefficients should have
absolute t-values greater than 2.
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If your model uses past behavior of the dependent variable as a leading indicator in the form of moving averages and
autoregressions (ARMA terms), then you must run the Augmented Dickey-Fuller unit root test. This can provide protection
against explosive gain from the moving average and autoregressive terms. (For details, refer to the macro %DFTEST.) Most
likely, the best CDR models will employ both explanatory variables as well as ARMA terms. In this case, run the model without
the ARMA terms and then run %DFTEST against the resulting residuals. If the %DFTEST indicates that the residuals are
stationary, then the full model (which employs both the explanatory and ARMA terms) should be employed.

Collinearity poses computational problems often leading to spurious results. As an additional precaution, test for collinearity with
the SINGULAR=1E-5 (and even 1E-4) and run candidate models with PROC MODEL to obtain collinearity diagnostics.

Many complex systems evolve over time. Older data may contain patterns inconsistent with more recent data. Economists often
refer to such changes as “regime shifts” because of the radical changes in policy from one presidential or congressional regime to
the next. While visualization techniques are more reliable, there are several worthwhile statistical tests. First, you can simply split
the data into two consecutive halves and run PROC ARIMA on each of these data sets using the same variables and ARMA
terms as found in the candidate model. Theoretically, the coefficients should be statistically equal. You can inspect the coefficients
for yourself, or you can rely on formal significance tests such as the Chow test (which is an F-test) or the Watson-Davies.

Heteroscedacity occurs when the variance of the errors vary over time. Because regression assumes a constant variance, least
squares estimates may have deceptively high significance tests. In PROC AUTOREG, specify the ARCHTEST option to detect
this phenomena.

Further Detection of Possible Artifacts with Visualization

The mind’s eye can spot nuances and subtleties in the data that are often missed by statistical diagnostics because of the restrictive
assumptions necessary to construct models and tests. Moreover, graphs appeal to the intuitive powers of the mind.

Outliers in the dependent and explanatory variables can bias all estimates and statistical tests. Because regression attempts to
minimize the MSE, regression algorithms may inadvertently bias the fit to the outliers rather than to the underlying trend. 
Unfortunately, casual inspection of graphs of the raw data are not sufficiently intuitive for outlier detection.

I recommend filtering your data with the Median Smoothing technique. You then graph the filtered data as a curve with the raw
data as points. Alternatively, you can subtract the raw data from the filtered data and graph the absolute values of their difference.

Median Smoothing detects a pattern for each neighborhood of points, pulling all of the deviant points in line with the local pattern.
Most likely, median smoothing will eliminate severe noise while emphasizing the underlying pattern in the data. Unlike global
representations of data, this method is not vulnerable to regime shifts, level shifts, or a series of outliers. Hence, these problems are
more easily observed.
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If severe outliers are detected, you should manually adjust outliers to more reasonable values and rerun the CDR on this
“winsorized” data set. I do not recommend using impulse interventions because the SBC will penalize every outlier adjustment,
possibly disqualifying a reasonable model for system behavior under normal conditions.

If regime shifts or level shifts are detected, you should employ intervention variables, as discussed in the section entitled
“Intervention Models and Interrupted Time Series” in Chapter 3, "The ARIMA Procedure,” SAS/ETS User’s Guide, Version 6,
Second Edition.

What follows is a visualization of the problem and my solution to the problem.

.
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Noise generated by outliers and level shifts frequently cause spurious models with deceptively lower MSE’s than more
representative models. That is, many artifacts model noise rather than the underlying pattern. Running models on median-
smoothed, filtered data will eliminate many artifacts. Erroneous models that rely on exogenous changes for their strength will no
longer have a unfair advantage over more reliable candidate models. In other words, we want to model the behavior of  a system
under normal or expected conditions rather than its response to occasional or random anomalies produced by influences outside
of the system.

Often outliers and level shifts are not due to bad data. They often indicate the influence of variables not included in the systems
analysis. Note the date of an outlier and try to determine what events may have triggered shocks to the system. Items in the news
may alert you to abnormal behavior unpredictable by regression.

Also, PROC ARIMA describes the global or average responses of the system over a span of time within which data was
collected. However, PROC ARIMA projects its forecasts based on the most recent data; that is, current data serves as a
springboard for future estimates. Consequently, you should be particularly vigilant concerning recent abnormal behavior in the
dependent and explanatory variables. Several outliers or anomalies in recent data may indicate a “turning point” where a system’s
dynamics shift radically, invalidating prior models based on older data generated by different systems dynamics.

Team Effort

Forecasting is an art best practiced as a team effort. If you know people who possess reliable knowledge acquired from years of
study and experience on process behavior, then let them critique your new models. Dissent is healthy. It is the last line of defense
against spurious models. CDR-based ARIMA forecasts are really a starting point for discussion, and the final forecast is arrived at
by consensus. The human factor is critical.
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Three Definitions Used in Combinatorics

Definition of a factor A discrete, finite set of values describing the attribute of an entity or system. In demographics,
the factor gender consists of the set {M, F}; .
A factor in a CDR model is the possible lags on the dependent variable.
In our example, this factor, the possible number of lags on the AR term, would consist of the
set {0, 1, 2, 3, 4}; .

Definition of the cross product An array formed from two or more factors. Each element of such an array is referred to as a
“tuple”. Each entry in a cross product is demarcated with “ (” and “)”. Each entry in a tuple is
referred to as a component, and these entries are separated by “,” with the first component
corresponding to the first factor, the second component corresponding to the second factor,
and so on.

Example of a cross product of two factors

In 1629, Fermat calculated the odds of  “winning on field bets” at the game of dice by listing all possible combinations. Each die,
d1 and d2, can assume values from 1 to 6. The cross product for a pair of dice contains 6x6=36 tuples.

                                                                                                                                                                                      Cross
Product Sum of the components within each tuple
d1 \ d2 1       2         3      4      5         6

1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6); (2)  (3)  (4)  (5)   (6)    (7)

2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6); (3)  (4)  (5)  (6)   (7)    (8)

3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6); (4)  (5)  (6)  (7)   (8)    (9)  
4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6);  (5)  (6)  (7)  (8)   (9)    (10)
5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6);  (6)  (7)  (8)  (9)   (10)  (11)
6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6);  (7)  (8)  (9)  (10) (11)  (12)

Fermat then evaluated the probability of a particular outcome by counting the number of occurrences of outcomes that sum to a
particular number. For example, out of the 36 pairs, 3 pairs sum to a value of 4 (note the highlighted entries). Therefore, the odds
of rolling a pair of dice that sum to 4 is 3/36 or 8.33%.

Outcome of d1+d2                       Probability      | Outcome of d1+d2 Probability
2 1/36 | 8 5/36
3   2/36 | 9 4/36
4 3/36 | 10 3/36
5 4/36 | 11 2/36
6 5/36 | 12 1/36
7 6/36 |
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The following DATA step will generate the cross product with two parameters: d1 is a factor = { 1 to 6} and is called the first
component of the tuple. Likewise, d2 is a factor {1 to 6} and is called the second component of the tuple.

 data dice(keep=d1 d2);
 do d1=1 to 6;   /* iterate through all possible values of the first factor     */
 do d2=1 to 6;         /* iterate through all possible values of the second factor */
 output ;
 end; end;
 ;
 run;

Historic Footnote: In 1687, Jacob Bernoulli perfected Fermat=s original method. Wealthy Swiss and French gaming
establishments paid for his research in order to change the rules of shooting dice to slightly favor the casino.

Definition of the combination Unique groupings of the elements of a set; the number of elements allowed in each grouping is
referred to as the Order of the Combination.

Example: Consider the set S = { a, b, c, d}. We will find all of set S’s combinations of order 2.

The SAS DATA step to generate the combinations from the set {a, b, c, d} would be as follows:

 data c2(keep=combo);
 array S[4] $1. ("a", "b", "c", "d");
 do i = 1 to 4;
 do j= (i+1)  to 4;    /* j > i to prevent a duplicate selection made
previously by the loop on i */
 do k= (j+1)  to 4;    /* k > j to prevent a duplicate selection made
previously by the loop on j */
 combo= "("  ||  compress(S[i])  ||  ", "  ||  compress(S[j])  ||   ", "  ||
 compress(S[k]) ||   ")";
 output;
 end; end; end;
 ;
 run;

The results are
(a, b, c), (a, b, d), (a, c, d), (b, c, d)

The Building Blocks of Combinatorics
With the cross product and combination DATA steps (above) as building blocks, we will generate all of the ESTIMATE
statements in PROC ARIMA. With simple variations of these two DATA steps, we will produce the list of all possible models.
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 Practical Examples: Doing a Forecast

Note: We have taken logs of all variables in the data set lyxx.

QTR ATGR WSAG WSCONS WSFIRE WSGOV WSMANU WSMIN WSTCU WSSERV WSRETL WSWHL DEFL
84Q1 21.993 -2.659 -0.476 -0.942 0.990 -0.448 -0.569 -0.327 0.541 -0.066 -0.889 4.280
84Q2 22.027 -2.645 -0.448 -0.919 0.997 -0.416 -0.557 -0.296 0.582 -0.027 -0.851 4.289
84Q3 22.075 -2.631 -0.440 -0.879 1.019 -0.387 -0.534 -0.285 0.619 -0.013 -0.828 4.296
84Q4 22.038 -2.631 -0.499 -0.860 1.028 -0.380 -0.528 -0.284 0.636 0.005 -0.810 4.304
85Q1 22.062 -2.604 -0.445 -0.816 1.061 -0.340 -0.526 -0.276 0.651 0.018 -0.792 4.314
85Q2 22.077 -2.590 -0.440 -0.792 1.063 -0.326 -0.516 -0.270 0.682 0.027 -0.770 4.324
85Q3 22.126 -2.590 -0.448 -0.774 1.085 -0.311 -0.541 -0.260 0.691 0.058 -0.774 4.333
85Q4 22.119 -2.604 -0.425 -0.757 1.090 -0.293 -0.562 -0.255 0.719 0.075 -0.761 4.343
86Q1 22.108 -2.617 -0.448 -0.726 1.111 -0.281 -0.594 -0.259 0.747 0.085 -0.774 4.350
86Q2 22.081 -2.645 -0.459 -0.724 1.103 -0.281 -0.742 -0.259 0.756 0.089 -0.790 4.351
86Q3 22.119 -2.645 -0.503 -0.701 1.122 -0.265 -0.849 -0.274 0.777 0.087 -0.790 4.359
86Q4 22.055 -2.645 -0.506 -0.673 1.128 -0.263 -0.870 -0.264 0.801 0.102 -0.787 4.367
87Q1 22.081 -2.645 -0.564 -0.681 1.176 -0.278 -0.906 -0.254 0.808 0.110 -0.761 4.379
87Q2 22.030 -2.617 -0.576 -0.660 1.166 -0.250 -0.842 -0.246 0.839 0.123 -0.749 4.388
87Q3 22.138 -2.577 -0.555 -0.658 1.171 -0.227 -0.856 -0.242 0.857 0.151 -0.726 4.399
87Q4 22.118 -2.551 -0.546 -0.662 1.186 -0.188 -0.805 -0.223 0.909 0.148 -0.705 4.410
88Q1 22.158 -2.513 -0.587 -0.713 1.202 -0.174 -0.810 -0.248 0.890 0.162 -0.717 4.416
88Q2 22.117 -2.501 -0.560 -0.650 1.209 -0.150 -0.787 -0.214 0.948 0.168 -0.675 4.428
88Q3 22.216 -2.489 -0.553 -0.625 1.177 -0.135 -0.823 -0.208 0.976 0.187 -0.658 4.441
88Q4 22.146 -2.465 -0.553 -0.635 1.216 -0.092 -0.832 -0.203 0.981 0.196 -0.641 4.453

Note: Where QTR means the fiscal quarter, the suffix WS stands for Wages and Salaries
and ATGR (the response variable) means Adjusted Taxable Gross Receipts.

All of the data used in these examples is derived from the last 55 quarters of the New Mexico economy. Because much of the
state=s economy (as measured in dollars) grew exponentially from inflation and population growth, the log transformation is
appropriate. Also, in ten years of testing, the log transform has performed well.

 Establishing a Benchmark for Model Accuracy: The Univariate BJ ARIMA Model

Because of its simplicity and elegance, every CDR candidate model must exceed the accuracy of the univariate BJ ARIMA. The
BJ ARIMA model relies entirely on past behavior to forecast future behavior of the dependent variable. After 20 years, it is still
accepted as the benchmark modeling paradigm.

The univariate ARIMA will help constrain the number of possible AR and MA values in the dynamic regressions. Better
constraints will reduce the number of combinations that PROC ARIMA must evaluate.

If the dynamic regression uses an ARIMA component, particularly an MA component, then the dependent variable must be
cointegrated with the explanatory variables (and their lags).

Example of a univariate BJ ARIMA
Adjusted Taxable Gross Receipts resembles a sales tax with an extremely broad base. It applies to almost all final sales at the end
of the chain of commerce (that is, it is not a pyramid tax). We want to model the ATGR based solely on its past behavior.
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First, we must apply transforms that make ATGR stationary. In particular, the mean and all statistics based on the second moment
must be invariant over time. We applied a log to ATGR .

 proc arima data=lyxx;
 i var=atgr(1) stationarity=(adf=(4));
 run;
 

ARIMA Procedure

Name of variable = ATGR.
Period(s) of Differencing = 1.

Autocorrelations

        Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
Std

 0  0.0013486   1.00000     |                 |********************|
 0
         1 -0.0007685   -0.56981    |        ***********|   .                |
 0.134840
         2 0.00042225    0.31310    |             .     |******.             |
 0.173171
         3 -0.0005321   -0.39454    |           ********|      .             |
 0.183175
          4 0.00077771    0.57667  |            .       |************        |
  0.198024
          5 -0.0006342   -0.47025  |           *********|        .           |
  0.226509
          6 0.00036799    0.27286  |          .         |*****    .          |
  0.243613
          7 -0.0004354   -0.32285  |          .   ******|         .          |
  0.249108
          8 0.00047701    0.35370  |          .         |*******  .          |
  0.256603
          9 -0.0003097   -0.22964  |         .     *****|          .         |
  0.265319
         10 0.00015593    0.11562  |         .          |**        .         |
  0.268909
         11 -0.0003072   -0.22778  |         .     *****|          .         |
  0.269811
         12 0.00031396    0.23280  |         .          |*****     .         |
  0.273285
         13 -0.0000974   -0.07221  |         .         *|          .         |
  0.276867
                                           "." marks two standard errors

                                    Inverse Autocorrelations
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                   Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
                     1    0.32703  |               .    |*******             |
                     2    0.03109  |               .    |*   .               |
                     3   -0.08498  |               .  **|    .               |
                     4   -0.16576  |               . ***|    .               |
                     5    0.19132  |               .    |****.               |
                     6    0.08843  |               .    |**  .               |
                     7    0.03745  |               .    |*   .               |
                     8   -0.02444  |               .    |    .               |
                     9    0.01552  |               .    |    .               |
                    10    0.13215  |               .    |*** .               |
                    11    0.11115  |               .    |**  .               |
                    12   -0.00133  |               .    |    .               |
                    13   -0.05662  |               .   *|    .               |

                                    Partial Autocorrelations

                   Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
                     1   -0.56981  |         ***********|    .               |
                     2   -0.01715  |               .    |    .               |
                     3   -0.33008  |             *******|    .               |
                     4    0.37063  |               .    |*******             |
                     5   -0.01629  |               .    |    .               |
                     6   -0.06499  |               .   *|    .               |
                     7   -0.11873  |               .  **|    .               |
                     8   -0.10362  |               .  **|    .               |
                     9    0.15615  |               .    |*** .               |
                    10   -0.06627  |               .   *|    .               |
                    11   -0.12439  |               .  **|    .               |
                    12   -0.07421  |               .   *|    .               |
                    13    0.08171  |               .    |**  .               |

* The White Noise is too high without accounting for seasonality.
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                             Autocorrelation Check for White Noise
                To   Chi                    Autocorrelations
               Lag  Square DF   Prob
                 6   73.10  6  0.000 -0.570  0.313 -0.395  0.577 -0.470  0.273
                12  100.43 12  0.000 -0.323  0.354 -0.230  0.116 -0.228  0.233

                            Augmented Dickey-Fuller Unit Root Tests
Type Lags RHO Prob<RHO T Prob<T F    Prob<F

Zero Mean 4    -5.3888 0.1050   -1.4060 0.1466       --        --
**Single Mean 4   -36.5771 0.0004 -2.7656 0.0704 3.8283 0.1272

Trend 4   -48.8250 0.0001   -2.9338 0.1610 4.3079 0.3457
.
** Without the dummy variable to account for seasonality, this ADF result is close enough.

The ADF results suggest var = a tgr(1). The acf chart decays exponentially to insignificance at about the fifth lag. And the PACF
cuts off after two lags. It looks like an AR(4) process. Seasonality is handled with a dummy variable rather than a deterministic
dif= (1,4) or dif= (1)(4).

A standard model with a single difference,  an intervention dummy variable DUMQ3 (which has a 1 at the third quarter of every
year and 0 otherwise) produces good working results.

Estimate p = (1,4) input = (dumq3);

                                         Approx.
  Parameter   Estimate    Std Error   T Ratio  Lag  Variable Shift 
      MU         0.0028497    0.0038104      0.75   0   ATGR         0
  AR1,1       -0.46379      0.11831     -3.92   1   ATGR         0
  AR1,2        0.25118      0.11833      2.12   4   ATGR         0
  NUM1         0.04014      0.01031      3.89   0   DUMQ3        0

Strong T-Tests for the AR terms and the dummy seasonal variable

                Constant Estimate  =  0.0034556

                Variance  Estimate = 0.00061439
                Std Error Estimate = 0.02478688
                AIC                = -246.78816*
* Benchmark     SBC                = -238.75883*   The BJ ARIMA benchmark
SBC
                Number of Residuals=         55
                * Does not include log determinant.
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                      Correlations of the Estimates
                            ATGR        ATGR        ATGR        DUMQ3
Variable    Parameter         MU       AR1,1       AR1,2        NUM1

 ATGR        MU              1.000       0.044      -0.013      -0.697
 ATGR        AR1,1           0.044       1.000       0.231      -0.070
 ATGR        AR1,2          -0.013       0.231       1.000       0.023
 DUMQ3       NUM1           -0.697      -0.070       0.023       1.000

These are excellent cross correlations between the parameters.

                      Autocorrelation Check of Residuals

                To   Chi                    Autocorrelations
               Lag  Square DF   Prob
                 6    2.80  4  0.591  0.029  0.003  0.044 -0.025 -0.199  0.042

This model=s residuals are close to white noise. This is an acceptable
benchmark BJ ARIMA model.

Running the Combinatoric Dynamic Regression

We want to model adjusted gross receipts taxes (ATGR) as a function of only two Sectors. In this model, we will rely upon only
the major revenue-producing sectors in this state’s economy:

List of W&S (Wages and Salaries) Sectoral Explanatory Variables:

wscons   W&S Construction wsfire W&S Finance, Insurance, Real Estate
wsmanu W&S Manufacturing wsmin W&S Mining
wsretal           W&S Retail Sales wsserv W&S Service
wstcu W&S Transportation, Communications and Utilities

with two factors appearing in all models (hence their inclusion will not increase the number of combinations):

defl GDP Deflator
dumq3  a seasonal intervention for the strongest, the third quarter of every year.

Note: W&S means Sectoral Wages and Salaries earned in New Mexico.

We want a pair of lags, one for each explanatory variable, that produces the “best” fit as measured by the SBC.

Format of the Model: ESTIMATE input = (lag1$ X1 lag2$ X2   DEFL DUMQ3);   
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Constraints:

2 W&S sectoral explanatory variables (denoted by X1 and X2) must be used in each model.
X1 and X2 can have a single lag varying from 0 to 5 quarters.
Each lagged cross correlation should exceed 0.65.

Number of Models in the List of Combinations:

The number of combinations of 2 distinct sectors drawn from a set of 7 sectors is 21.
The size of the Cross Product of the 2 lags is 6 x6 36.
Total Number (1) x(2) 756.        
                   

 Generate the List of Combinations of Models (The MOD File)

 
 data mod(keep=est);
 array vv[9]   $8.
(Awscons","wsfire","wsmanu","wsmin","wsretl","wsserv","wstcu","defl","dumq3");
 array sym[6] $5. (A @, "1", "2", "3", A4", A5");
 retain modelno 0;
 /* Combination Phase -  select a pair of W&S explanatory variables */
 do v1=1 to 7; /* select the first wage and salary explanatory variable  */
 do v2=(v1+1) to 7;  /* select the second unique wage and salary explanatory */

   /* variable */
 

 /* Construct a Cross Product for a pair of lags */
 do s1=1 to 6; /* select a lag for the first explanatory variable */
 do s2=1 to 6; /* select a lag for the second explanatory variable */
 modelno=modelno+1;  /* assign a Model Identification Number             */
 est=compress(@mod@ || modelno)||@:  A||"estimate  input=("
 || compress(sym[s1])  ||  @  A  ||  compress(vv[v1])||" " || compress(sym[s2])
||  @  A  ||  compress(vv[v2]) ||  "  defl dumq3);";
 output ;
 end; end; end; end;
 ;
 run;
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 Here is a partial list of combinations (out = mod):
 
 mod1: estimate  input=( wscons     wsfire    defl dumq3);
 mod2: estimate  input=( wscons 1   wsfire    defl dumq3);
 mod3: estimate  input=( wscons 2   wsfire    defl dumq3);
 mod4: estimate  input=( wscons 3   wsfire    defl dumq3);
 mod5: estimate  input=( wscons 4   wsfire    defl dumq3);
 mod6: estimate  input=( wscons 5   wsfire    defl dumq3);
 mod7: estimate  input=(1 wscons     wsfire    defl dumq3);
 mod8: estimate  input=(1 wscons 1   wsfire    defl dumq3);
 mod9: estimate  input=(1 wscons 2   wsfire    defl dumq3);
 mod10: estimate  input=(1 wscons 3   wsfire    defl dumq3);
 mod11: estimate  input=(1 wscons 4   wsfire    defl dumq3);
 mod12: estimate  input=(1 wscons 5   wsfire    defl dumq3);
   ooo     ooo   ooo
 mod250:  estimate  input=(5  wsfire 3  wsmanu  defl dumq3);
 mod251:  estimate  input=(5  wsfire 4  wsmanu  defl dumq3);
 mod252:  estimate  input=(5  wsfire 5  wsmanu  defl dumq3);
 mod253:  estimate  input=(    wsfire    wsmin    defl dumq3);
 mod254:  estimate  input=(    wsfire 1  wsmin    defl dumq3);
 mod255:  estimate  input=(    wsfire 2  wsmin    defl dumq3);
 mod256:  estimate  input=(    wsfire 3  wsmin    defl dumq3);
 mod257:  estimate  input=(    wsfire 4  wsmin    defl dumq3);
   ooo    ooo  ooo
 mod746:  estimate  input=(4  wsserv 1  wstcu    defl dumq3);
 mod747:  estimate  input=(4  wsserv 2  wstcu    defl dumq3);
 mod748:  estimate  input=(4  wsserv 3  wstcu    defl dumq3);
 mod749:  estimate  input=(4  wsserv 4  wstcu   defl dumq3);
 mod750:  estimate  input=(4  wsserv 5  wstcu    defl dumq3);
 mod751:  estimate  input=(5  wsserv     wstcu    defl dumq3);
 mod752:  estimate  input=(5  wsserv 1  wstcu    defl dumq3);
 mod753:  estimate  input=(5  wsserv 2  wstcu    defl dumq3);
 mod754:  estimate  input=(5  wsserv 3  wstcu    defl dumq3);
 mod755:  estimate  input=(5  wsserv 4  wstcu    defl dumq3);
 mod756:  estimate  input=(5  wsserv 5  wstcu    defl dumq3);
 

 

 Save SAS/ETS Statements

Next, export the SAS data set MOD to a text file.
Open this file in a word processor and copy the MOD text onto the clipboard.

Use the SAS/ETS program below to evaluate all of the models (ESTIMATE statements):

 filename newout "d:\1a\fermat.txt";
 proc printto print=newout new;
 proc arima data=lyxx;
 identify var=atgr crosscorr=(WSCONS WSFIRE WSMANU WSMIN WSRETL WSSERV WSTCU
DEFL DUMQ3) noprint;

 
 /* next, paste the clipboard text from the word processor here     */
 ;
 run;
 proc printto;
 run;
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 /* extract the model number and resulting SBC from PROC ARIMA output     */
 data xx(keep=modelno SBC);
 retain modelno 0;
 infile "d:\1a\fermat.txt";
 input zz $97.;
 ii=index(zz,"SBC");
 if (ii NE 0) then do;
 pp=index(zz,"=")+1;
 SBC=input(substr(zz,pp),11.);
 modelno=modelno+1;
 output;
 end;
 ;
 proc sort data=xx out=rank;
 by SBC;
 ;
 proc print data=rank;
 run;

Here are the top 10 models ranked by SBC as a measure of goodness of fit:

MODELNO SBC Corresponding Estimate Statements

 80 -269.442 estimate  input=(1 wscons  1  wsmin     defl dumq3);
 79 -266.886 estimate  input=(1  wscons     wsmin     defl dumq3);
 73 -266.462 estimate  input=(    wscons     wsmin     defl dumq3);
 74 -265.581 estimate  input=(   wscons   1 wsmin     defl dumq3);
182 -263.801 estimate  input=(   wscons   1 wstcu     defl dumq3);
188 -262.899 estimate  input=(1 wscons   1 wstcu     defl dumq3);
181 -262.427 estimate  input=(   wscons     wstcu     defl dumq3);
 37 -262.055 estimate  input=(   wscons     wsmanu  defl dumq3);
109 -260.924 estimate  input=(   wscons     wsretl    defl dumq3);
  1 -260.116 estimate  input=(   wscons     wsfire    defl dumq3);

Find the ESTIMATE statement corresponding to a model number by looking it up in the MOD.TXT file.

Find the ARIMA listing corresponding to a model number by looking it up in the FERMAT.TXT file.

Validate Candidate Model - ID 80

 Parameter   Estimate    Std Error   T Ratio  Lag  Variable   Shift
 MU            17.38765     0.12331  141.01   0      ATGR         0
 NUM1         0.26704     0.01864    14.33  0      WSCONS    1
 NUM2         0.10670     0.02799     3.81   0      WSMIN       1
 NUM3         1.12523     0.02680    41.98   0      DEFL          0
 NUM4         0.02969     0.00566     5.24   0      DUMQ3      0

We note that the T-ratios are highly significant at an alpha < .01!

The correlations between the coefficients are low.
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                                  Correlations of the Estimates
                              
       Variable ATGR      WSCONS    WSMIN     DEFL     DUMQ3

       ATGR  1.000 0.631      -0.075      -0.992      -0.032
WSCONS  0.631      1.000 -0.637      -0.683       0.007

       WSMIN -0.075    -0.637  1.000  0.192     -0.046
       DEFL -0.992    -0.683        0.192       1.000       0.014
       DUMQ3 -0.032      0.007    -0.046        0.014       1.000

The Ljung-Box Q Test on the residuals reveals that this model sufficiently accounts for most of the variation in ATGR.  However,
lags 1, 3, and particularly 5 are weak. This model could use some fine tuning.

                               Autocorrelation Check of Residuals

                 To   Chi             Autocorrelations

                Lag  Square DF   Prob

                  6   10.26     6    0.114  0.010  0.190 -0.023  0.137 -0.304 -0.132

                 12   19.40   12   0.079 -0.190 -0.173 -0.075 -0.185 -0.068 -0.152

The ACF check of the residuals indicate that there may be some information to be accounted for by a more complex model. Fine-
tuning is beyond the scope of this article.

We begin checking for model adequacy.

 proc arima data=lyxx;
 identify var=atgr crosscorr=(wscons wsmin dumq3 defl) noprint;
 est input=(1 wscons 1 wsmin dumq3 defl) plot;
 run;

There is a problem caused by an unspecified moving average on the error term. The inverse autocorrelations
are all positive and do not decay quickly enough.



         41

                                    Inverse Autocorrelations

                   Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
                     1    0.20386  |               .    |****.               |
                     2    0.13956  |               .    |*** .               |
                     3    0.12091  |               .    |**  .               |
                     4    0.06506  |               .    |*   .               |
                     5    0.40142  |               .    |********            |
                     6    0.26042  |               .    |*****               |
                     7    0.22259  |               .    |****.               |
                     8    0.11367  |               .    |**  .               |
                     9    0.05503  |               .    |*   .               |
                    10    0.13732  |               .    |*** .               |
                    11    0.14161  |               .    |*** .               |
                    12    0.15825  |               .    |*** .               |
                    13    0.01642  |               .    |    .               |
                    14    0.09984  |               .    |**  .               |

And worse, the PACF does not cut off or decay exponentially. Furthermore, it is negative most of the time. The PACF
demonstrates some inadequacy in this model. Adding an MA term to the model might produce improvement; however, such fine-
tuning is beyond the scope of this paper.

                                    Partial Autocorrelations

                   Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
                     1    0.00975  |               .    |    .               |
                     2    0.18993  |               .    |****.               |
                     3   -0.02696  |               .   *|    .               |
                     4    0.10582  |               .    |**  .               |
                     5   -0.31337  |              ******|    .               |
                     6   -0.18254  |               .****|    .               |
                     7   -0.09286  |               .  **|    .               |
                     8   -0.16375  |               . ***|    .               |
                     9    0.05742  |               .    |*   .               |
                    10   -0.22473  |               .****|    .               |
                    11   -0.15668  |               . ***|    .               |
                    12   -0.23036  |               *****|    .               |
                    13    0.00183  |               .    |    .               |
                    14   -0.14016  |               . ***|    .               |
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 Comparison of CDR Explanatory Model and the BJ ARIMA

The measures of goodness of fit look promising, producing roughly a 13% improvement for the SBC and a 25% improvement for
the Std Error Estimate over the univariate ARIMA.

                                          CDR  BJ ARIMA
 Variance  Estimate = 0.00033352 0.00061
 Std Error Estimate = 0.01826247 0.02478         CDR shows a 25% improvement!
 AIC                =  -279.47 -246.7
 SBC                =  -269.44 -238.7           CDR shows a 13% improvement!

with Number of Residuals =  55

BACK-CAST for Univariate BJ ARIMA
Obs    Forecast Std Error   Lower 95%   Upper 95%      Actual  Residual
53     22.6693    0.0248     22.6207     22.7179     22.6633   -0.0060
54     22.6703    0.0281     22.6152     22.7255     22.6749    0.0045
55     22.7106    0.0337     22.6445     22.7767     22.7215    0.0109
56     22.7064    0.0374     22.6331     22.7797     22.7112    0.0048

Back-Casts for CDR Model 80: The Std Error shows a 34% improvement over the BJ
ARIMA!
Obs    Forecast Std Error   Lower 95%   Upper 95%      Actual  Residual
53     22.6562    0.0183     22.6204     22.6920     22.6633    0.0071
54     22.6581    0.0183     22.6223     22.6939     22.6749    0.0168
55     22.7205    0.0183     22.6847     22.7563     22.7215    0.0010
56     22.6992    0.0183     22.6634     22.7350     22.7112    0.0120

In general, the CDR model back fits the last four quarters as well as the BJ ARIMA. The CDR candidate shows tremendous
improvement in the confidence interval.  However, the venerable BJ ARIMA actually performs well. In three out of four within
sample forecasts, the BJ ARIMA had smaller residuals than the CDR model.  In practice, with leads over one time period (one
quarter-year), the CDR has proven far more reliable because it relies on dependable forecasts on the exogenous, explanatory
variables. While it is beyond the scope of this paper, which concerns combinatorics, the BJ ARIMA with the EGARCH in PROC
AUTOREG could further improve this model.

In practice, the ARIMA is effective only for extremely short term forecasts. In our example, the ARIMA model uses an ar1 and
an ar2 term. Hence, for forecasts projected ahead more than two quarters, the autoregressive terms will be applied to its own
prior projections. The quality of the ARIMA model predictions decay rapidly. Hence, for forecasts beyond two quarters, the
Dynamic Regression model will produce superior results.
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 Example 1: An Implementation of a Full Dynamic Regression Model with MA Terms

Constraints:

• the AR  term can range from 0 to 5
• the MA term can range from 0 to 5
• two Wage and Salary explanatory variables per model
• each explanatory Wage and Salary variable can have lags from 0 to 3 time periods

Symbol Table for the Combinatoric-Generating DATA Step:

• vv represents possible Wage and Salary explanatory variables
• sym represents possible lags
• p is the order of the autoregressive term on past values of ATGR
• q is the order of the moving average on the past errors in estimation

 data mod(keep=est);
 array vv[7] $8.
("gdpdef","wsmin","ogval","wscons","wstcu","wsfire","wsserv");
 array sym[4] $5. (" ", "1", "2", "3");
 retain modelno 0;
 do v1=1 to 7;             /* select the first wage and salary explanatory
variable                 */
 do v2=(v1+1) to 7;        /* select the second unique wage and salary
explanatory variable */
 do s1=1 to 4;                /* select a lag for the first explanatory
variable                            */
 do s2=1 to 4;                /* select a lag for the second explanatory
variable                       */
 do p=0 to 5;                 /* select the order of the AR term           
                                  */
 do q=0 to 5;                 /* select the order of the MA term           
                                 */
 modelno=modelno+1;  /* assign a model identification number               
                      */
 est=compress("mod" || modelno)||" :  " || "estimate " || " p="||
compress(p) || " q=" || compress(q) || "  " ||
 " input=(" || compress(sym[s1]) || "  " ||  compress(vv[v1]) || " " ||
compress(sym[s2]) || " " || compress(vv[v2]) || ");";
 output ;
 end; end; end; end; end; end;
 ;
 run;
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Here are three samples generated by this DATA step:

Sample 1:

                    1    mod1:  estimate  p=0 q=0   input=(gdpdef wsmin);
                    2    mod2:  estimate  p=0 q=1   input=(gdpdef wsmin);
                    3    mod3:  estimate  p=0 q=2   input=(gdpdef wsmin);
                    4    mod4:  estimate  p=1 q=0   input=(gdpdef wsmin);
                    5    mod5:  estimate  p=1 q=1   input=(gdpdef wsmin);
                    6    mod6:  estimate  p=1 q=2   input=(gdpdef wsmin);
                    7    mod7:  estimate  p=2 q=0   input=(gdpdef wsmin);
                    8    mod8:  estimate  p=2 q=1   input=(gdpdef wsmin);
                    9    mod9:  estimate  p=2 q=2   input=(gdpdef wsmin);
Sample 2:

                   55    mod55:  estimate  p=0 q=0   input=(1gdpdef 2 wsmin);
                   56    mod56:  estimate  p=0 q=1   input=(1gdpdef 2 wsmin);
                   57    mod57:  estimate  p=0 q=2   input=(1gdpdef 2 wsmin);
                   58    mod58:  estimate  p=1 q=0   input=(1gdpdef 2 wsmin);
                   59    mod59:  estimate  p=1 q=1   input=(1gdpdef 2 wsmin);
                   60    mod60:  estimate  p=1 q=2   input=(1gdpdef 2 wsmin);
                   61    mod61:  estimate  p=2 q=0   input=(1gdpdef 2 wsmin);
                   62    mod62:  estimate  p=2 q=1   input=(1gdpdef 2 wsmin);
                   63    mod63:  estimate  p=2 q=2   input=(1gdpdef 2 wsmin);
Sample 3:

                3006    mod3006: estimate  p=2 q=2   input=(3 wsfire 1 wstcu);
                3007    mod3007: estimate  p=0 q=0   input=(3 wsfire 2 wstcu);
                3008    mod3008: estimate  p=0 q=1   input=(3 wsfire 2 wstcu);
                3009    mod3009: estimate  p=0 q=2   input=(3 wsfire 2 wstcu);
                3010    mod3010: estimate  p=1 q=0   input=(3 wsfire 2 wstcu);
                3011    mod3011: estimate  p=1 q=1   input=(3 wsfire 2 wstcu);
                3012    mod3012: estimate  p=1 q=2   input=(3 wsfire 2 wstcu);
                3013    mod3013: estimate  p=2 q=0   input=(3 wsfire 2 wstcu);

* Warning: Some of the generated models use the MA term q > 0. However, some of these models may not be
cointegrated.

 Example 2:  Models with AR Denominator Factors

Definition of a First Order AR Denominator in a transfer function: A single parameter applied to each selected explanatory
variable that “estimates the effect of an infinite distributed lag with exponentially declining weights” (SAS/ETS User’s Guide, page
123).

Constraints:

• each model must have 2 explanatory variables
• the numerator (lag) must range from 0 to 3;
• the denominator factor ( delta(B) ) must = 1 (if used)
• the MA term must range from 0 to 2
• the AR  term must range from 0 to 2
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Symbol Table:

Please refer to the Symbol Table in Example One.

 data mod(keep=est);
 array vv[5] $8. ("gdpdef","ogval","wscons","WSRETL","wsserv");
 array sym[4] $5. (" ", "1", "2", "3","1/(1)", "2/(1)", "3/(1)");
 do v1=1 to 5;                   /* select first explanatory variable      
         */
 do v2=(v1+1) to 5;              /* select non-duplicate second explanatory
variable */
 do s1=1 to 4;                   /* select lag on first explanatory variable
        */
 do s2=1 to 4;                   /* select lag on second explanatory
variable        */
 do p=0 to 2;                    /* select order of ar term                
         */
 do q=0 to 2;                    /* select order of moving average, ma, term
        */
 est="estimate " || " p="||compress(p) || " q=" || compress(q)||"  " || "
input=(" || compress(sym[s1])|| compress(vv[v1]) ||" " || compress(sym[s2])
|| compress(vv[v2]) ||  ") method=ml maxit=200; ";
 output ;
 end; end; end; end; end; end;
 ;
 run;
 proc print data=mod; run;

 Sample Output from data step with the AR Denominator Term included
 oooo  ooo      ooo     ooo
1197 estimate p=2 q=2 input=(1/(1) wscons wsserv) method=ml  maxit=200;
1198 estimate p=0 q=  input=(1/(1) wscons 1/(1) wsserv) method=ml  maxit=200;
 1199  estimate p=0 q=1 input=(1/(1) wscons 1/(1) wsserv) method=ml  maxit=200;
 1200  estimate p=0 q=2 input=(1/(1) wscons 1/(1) wsserv) method=ml  maxit=200;
 1201  estimate p=1 q=0 input=(1/(1) wscons 1/(1) wsserv) method=ml  maxit=200;
 1202  estimate p=1 q=1 input=(1/(1) wscons 1/(1) wsserv) method=ml  maxit=200;
 1203  estimate p=1 q=2 input=(1/(1) wscons 1/(1) wsserv) method=ml  maxit=200;
 1204  estimate p=2 q=0 input=(1/(1) wscons 1/(1) wsserv) method=ml  maxit=200;
 1205  estimate p=2 q=1 input=(1/(1) wscons 1/(1) wsserv) method=ml  maxit=200;
1206 estimate p=2 q=2 input=(1/(1) wscons 1/(1) wsserv) method=ml  maxit=200;
oooo  ooo      ooo     ooo

* Warning: Some of the generated models use the MA term q > 0. However, some of these models may not be
cointegrated.
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Conclusions
Combinatoric dynamic regression is an easily implemented tool that can help the researcher find and assess all possible ARIMA
models. The method demonstrated is a flexible tool for knowledge discovery. The researcher may find improved models.  By
using CDR, the researcher can rest assured that he has exhausted all possibilities.  If improved models are not found, the
researcher knows that existing models outperform any other possible models. Effectively automating the process of finding models
frees the researcher to spend more time and resources on the evaluation and fine-tuning of the models found.  Combinatorics may
prove useful when applied to other modeling paradigms, particularly PROC MODEL and PDL.
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