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Abstract

Two smple, elegant DATA steps are used to generate al possible dynamic regression models from a constrained set of
explanatory variables, lags, and an ARIMA procedure. From acomplete list of al models ranked by “goodness of fit, ” the best
fitting models are selected. These candidate models are vaidated by comparison to the results of time-tested, existing models, a
battery of significance tests, and judgmen.

Combinatoric dynamic regression (CDR) focuses on generating al possible models (which PROC ARIMA can then evauate).
CDR aso provides a method to assess the PROC ARIMA' s evauationsin order to select candidate modds. CDR isa purely
empirica method enabling data to spesk for itself. CDR provides knowledge discovery. It does not provide a method to solve
any paticular dynamic regression modd.

This paper providesingtructions on how to;

congtrain the number of possible models to amanageable size
generate the PROC ARIMA ESTIMATE statements for each model with two DATA steps
vaidate the models with the highest rank.

To use CDR, familiarity with dynamic regression and PROC ARIMA s required. Also, existing, proven models are needed to
ensure that highly ranked CDR models are consistent with proven models.

Incentives for using this procedure:

Easy to implement in 32 statementsd

Automaticaly establish a satistical benchmark.

Exploration and knowledge discovery - Identify potentialy predictive non-structural ARIMA modds.
Cross-validate existing structura models.

Fine-tune the lags in complex dynamic regression models as an dternative to State Space Moddling.

Because CDR is automated, you can achieve these gains with only amodest expenditure of resources and research time. Itisa
brute force method. CDR is a knowledge-discovery tool and not an expert system that will magically find the “best” modd.



While CDRis a powerful tool, please proceed with the greatest caution. We will discuss the need for caution here only
briefly and take it up in more detail in the section labeled “ Statistical Precautions. ”

Researchers are advised to proceed with available theory and previous results before using this approach.

Finally, this method requires cutting and pasting large amounts of text from a word processing editor into a SASDATA
step.

Definitions

Dynamic Regression: A linear regression modd that often combines an ARIMA procedure with explanatory variables (or their
lags). If the explanatory variables are lagged, they are often referred to as leading indicators.

Y is cointegrated with a set of explanatory variables{ X} (and their lags) whenever there exists a linear regresson of Y against
{X} whose residuds are stationary at equilibrium. Cointegration requires only that the residuals are sationary. It does not require
Y or {X} to be dationary. In adynamic regression that relies on amoving average, the models constructed from only the
explanatory variables and the AR term must be cointegrated.

SBC (the Schwartz Bayesian Criteria): - 2 In(L) + In(n) k where L isthe likelihood function based on the resduds, n is the number
of residuds, k isthe number of free parameters. We will use the SBC as the measure of goodness of fit. ” It has no statitical
measure for erroneous inferences and implications. In short, it has no dpha gatistic. Hence, while thisis an excdlent toal for
ranking numerous models, it isavery poor tool for measuring the reliability of any particular model. Y ou will need to apply other
methods, gtatistical methods to measure the probability of any erroneous significance of a particular moddl.

Mode Complexity: The number of estimated parameters.

Alpha: The theoretical probability that a statistical test demonstrates a good fit or a fit much better than mere guessing
but in fact has given you bad advice. Most statistical tests provide an alpha default to 5%. An alpha of 5% implies that
each model deemed significant by this test has a 1/20 (5%) probability of an incorrect inference.

Alternativesto CDR

PROC STATESPACE or Bayesan VARS will dso atempt to find an optimal subset of explanatory variables with suitable lags
and will account for interaction between the variables as well. When unable to constrain the number of explanatory variables and
their lagsto areasonable size, then the researcher should consider other search methods such as genetic agorithms, genetic
programming, smulated annedling, or cellular automata.
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I ntroduction

Combinatoric dynamic regression is the union of combinatorics and dynamic regression. With properly defined congtraints, it will
automatically generate and run dl possible dynamic regression models, exploiting the incredible speed and rdiability of the SAS
DATA STEP and PROC ARIMA in SASETS software. Reader familiarity with ARIMA concepts is assumed.

The Six Stages of Combinatoric Dynamic Regression

1. Definecongrants
Sdect ameaningful set of explanatory variables
Define maximum lags for the explanatory varigbles
Define maximum lags for ARIMA terms
Specify the modd format
Generate the list of possible models with an identification number for each modd (for easy reference)
Evauate the ESTIMATE statements representing the possible models with PROC ARIMA
Create a Ranked List whose fields are each model’ s identification number and the resulting SBC of the estimated modd; this
list is sorted by SBC.
Vaidate and diagnose interesting candidate models; compare the CDR results to univariate BJARIMA and exigting, time-
tested modd results.
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Statistical Precautions

Constraints- Limiting the Potential Complexity of the Models

Without adequate congtraints on the number of explanatory variables and their lags and the complexity of the ARIMA componernt,
the number of combinations of possible models will increase explosively. It may take considerable kill to provide sitable
condraints. To reduce the complexity of a system, the researcher may apply principal components or the more powerful
projection pursuit neurd net. If the researcher is unable to congtrain the complexity of the modds, then it is advisable to try genetic
dgorithms, cdlular auttomata, or smulated annedling.

Condraining the mode complexity is normaly beneficid, but for CDR, it is essentid. This requirement has severd advantagesin
forecadting: parsimonious models generdly outperform complex modes; simple models are easier to understand and are essier to
judtify; and with asmple modd, thereislessrisk of collinearity, which may bias your coefficients and satisticd tests. To measure
collinearity, use the COLLIN option of the FIT statement in the MODEL procedure.

Detecting Statistical Artifacts— Avoiding Bad Models

Process (P) A sysem with multiple time-seriesinputs X1, ... Xn and one time-series output Y. The output
Y isoften caled the response variable. The inputs, X1, ... , Xn, are caled explanatory
variables. When past values of the response variables are used as inputs, they are caled
autoregressive / moving average termsin the model denoted Y-1, Y-2, Y-3 where—1 indicates
alag of 1time period, -2 indicatesalag on Y of 2 time periods and so on.

System An interacting or interdependent set of variables forming a unified whole. This paper will dedl
with systems with only a single response variable and will emphasize the interaction and
dependence of the response variable to remaining variables, often referred to as explanatory
variables. Researchers requiring a broader treatment of systems, where al of the variables can
interact and effect the behavior of other variables, might consider PROC STATESPACE,
possibly PROC SYSLIN, or even smultaneous, stochastic partid differentid equations. While
identifying the system, andlysts must determine which variables to include, deeming others as
either unimportant, impossible to measure, or omitted for theoretica reasons.

System Context This st of excluded or even unknown variables determines the system context. In other words,
they are variables not included in the model. Excluded variables found in the context may have a
powerful but unknown impact on a system. For example, changes in the policy of a presidentia
regime could have a dramatic impact on arelevant sector of the economy. However, this
variable may be impossible to measure and predict.

Domain (D) Let d be vector whose components n+1 componentsare Y, X1, ..., Xn. Thedoman D isthe
set of dl naturaly occurring or possible d's. Every possible sasmple is a subset of D. The phrase
“naturaly occurring” implies that each variable has anormally occurring range, an expected
maximum and minimum under suitable or normal conditions. The vector space formed by D will
probably be in the shape of a hypercube whose limits on each side are set by the range of each
component varigble.

Non-Random Process (NP) A system whose output produces predictable results given certain inputs. A system whose

uniform behavior over its Domain D can be portrayed by a smooth curve dgebraicaly
represented by an ARIMA-X equation.
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Random Process (RP) A process whose output is a random series of numbers regardless of the inputs. A random
process may produce samples that temporarily appear to contain a pattern. Statistically
significant models can be based on such anomaous samples. These modes, lacking any
predictive value, are sampling artifacts. They are the results of bad data, bad sampling design, or
just bad luck.

Modes Linear equations representing an underlying, repestable process that generated the given
sample. Thus, an adequate model must explain and predict most possible ssmplesin its domain.
In other words, we are trying to generdize from predictable behavior in agiven sampleto a
modd that fits an underlying, smooth pattern found in the sample and then use this derived
modd to fit (in some sense predict) the data found in other relevant samples.

Alpha Error - Type One Given asample S, run a Random Walk test on the sample output Y to make certain there are

(Alpha-1) patterns worth modeling. We declare a sample to be non-random if there is less than a 5%
chance that a random process could produce the non-random patterns found in sample S,
Alphaisthe probability that a dtatistical test purporting to demonstrate non-random behavior is
in fact wrong. Many artifacts exist in data sets mistakenly categorized as non-random. In most
research Situations, thereis a 1/20 chance that a statisticaly significant test isin truth the result of
arandom process and hence an artifact.

If amultivariate process P is non-random, then the researchers try to model the process.

Themode assumes. if the pattern occurred in the existing sample, it will extend across most other relevant samples. Thislendsthe
mode predictive power. In other words, the modd is derived over theloca behavior of one sample and applied globdly to al
other possible samples. We hope amode that fits a given sample extremely well is more likely to fit other samples aswell.

Statistical Artifacts

An artifact isamodd that coincidentaly fits only the datafound in sample S but does not represent the underlying, non-random
processthat generated S. An artifact often provides excellent fits only on the given sample data but fails on dl other samples
generated in future activity. Also, abattery of significance tests may al give mideading results. Models whose assumed reiability
rests upon mideading significance tests are artifacts. In other words, by coincidence, a spurious modd fits the sample data so well
that the andyst is midead into believing the model represents the underlying process. Statitica artifacts are due to the inescapable
uncertainty found in most systems. We must accept some level of dphathat agiven pattern in asampleis not a phantom of a
random process. Other causes for statigtical artifacts can be model over-specification, collinear explanatory variables, regime
shifts, outliers and interventions, categorica data, highly clustered around specific behavior, unstable ARIMA terms, insufficient
sample size, and the laws of chance.

Apparently, thereis no escaping uncertainty

For example, wegther is a chaotic system. Even a hard laboratory science such as quantum physics has the “ uncertainty principle’.
The great physicist Nils Bohr concluded that the ultimate, underlying redlity of nature is unknown and unknowable. In
mathematics, the only deductive science, uncertainty aboundsin Zorn' s Lemma, Godd’ s Theorems, and Cantor’swork on infinite
sets.

In real-world applications, researchers usudly do not have the luxury of scientific laws. Without prior experience or essily
repeated and drictly controlled Iaboratory testing, an artifact may essily go undetected.



Early letters by Bayes explore the philosophy of science. He asks, “Are poor forecasts produced by bad models or merely poor
measurements? If rules are made to be broken, then modeling assumptions are certain to be ignored. Or worse, the assumptions
by which regression was derived are mathematica conveniences driven only for dgebraic simplification and not based on redlity. ”

Einstein complained, “Deterministic processes may appear to be random because of missing variables.” In practice, it may be
impossible to account for dl revant variables.

Even in controlled experiments, lack of time or funding may lead to insufficient sample size, errorsin measurement, or data entry.

However, in the face of insufficient data and the risk thisimplies, the anadlysts should rank models by their atistical significance.
After al amodd with strong statistical significance has a better chance of being reliable. Hopefully, the sample datais truly
indicative of the average sample in the domain and likewise the mode represents a pattern found in the test sample that extendsto
most other relevant samples. In other words, the modd fits the behavior of the process dmost everywhere.

The better amodd represents the past behavior of a system, the more likely it will produce better forecasts than models that do
not fit the existing data. Major assumption: context of the system has not changed radically from the past to the future. We are
relying on uniformity of behavior of the system over its domain. This problem of uniformity over its domain plagues al modes: the
behavior of dynamic systems change frequently. Thus, old models and the new ones are all at risk. We endeavor, therefore, to
select the strongest model's tested upon samplesincluding the most recently collected data.

Whether you sdlect one candidate model from ashort list of hand-picked candidates or you select one model from acomplete list
of models generated by CDR, the problem of statistica significance and artifacts remains the same. You don't know if current
sample datais indicative of the underlying process driving the market. Y ou don't know how the system and its processes will
changein the future. Old models deemed reliable may suddenly fail while new modes viewed with distrust may later produce
effective forecasts. Uncertainty prevails. No one knows enough to predict the future. In addition, ARIMA-X, our model type,
may not be gppropriate as a forecasting method for a process. With only one sample, only one time series, it may beimpossible to
determine whether a process is totaly random, chaotic, or nonlinear. Thus, there is dso uncertainty concerning the adequacy of
the modeling methods used.

This uncertainty appliesto every candidate mode regardiess of the length of the list from which it was selected. Statistica
significance of model adequacy is based strictly on sample dataand the particular candidate model you have selected to represent
patterns revedled by that data. Moreover, that statistical significance test has a 5% chance of being wrong. All candidate models
must be based on the same sample data and must be fairly assessed by the same tests for adequacy and the measures for apha.
These test results are independent of dl other models under consideration. Models must be tested separately on their own merits.
Any significant test on any model has that same 5% chance of being wrong.

With CDR, we are flying strictly by instruments, without a controlled laboratory experiment or scientific theory. Similarly, if your
arplaneisout of fud and thereis a dense fog surrounding you, then by instruments you must land. If you are asmal private
investor trading optionsin 15 minute intervals, then by statistical instruments you must decide.

The uncertainty is present regardless of the size of thelist of possible candidates. As noted, even model's based on theory contain
risks. How do analysts with atheory reconcile a sample that theoretica modelsfail to fit or explain? Most theories depend on
assumptions. Does the sample and the model completely satisfy the conditions?

CDR can dramatically improve our chances of finding reliable models

Does the increased number of models generated by CDR assure better reiability?
CDR takes into account al possible models. CDR ranks the models by goodness-of-fit and measure of statistical adequacy.
Because CDR produces aranked list of dl possible models and ranks them by SBC, you need to consider only the top
performers, say the best 10 or 20. Because, you are considering al possible models, you are very likely to find new and more
adequate modds. Even with atheory in hand, you can find better models that aso satisfy the theory. Because the long list
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produced by CDR contains al possible shorter lists of models generated by non-CDR procedures, the strongest candidate
models generated by CDR are likely to be more accurate and have stronger significance test than any model found in an arbitrary
short list of modes. Certainly, it will produce models at least as good as your favorite time tested model or panel of modelsor a
short list of hand picked models because CDR'’slong list will contain al of these cases as subsats. Y ou will consequently learn
more about the system you are modeling, and it guarantees that you will be considering the most significant models. There will be
no trade off between quantity and qudity. CDR gives you both.

Artifacts viewed in the light of inherent uncertainty in statistical significance testing

If asignificance test produces a positive result, there is an acceptable risk of 1/20 chance that the test is wrong. Hence, selection
by a significance test exposes usto the risk of selecting seemingly reliable models, phantoms of chance.

It has been argued by certain fellow economists that more models means more artifacts. True.

With most complex, dynamic systems, theory is not strong enough to specify a*correct” mode or even determineif ahighly
ranked mode may be correct. That is, most applications do not have the luxury of physica laws. Thisis especidly so in financid
and econometric models. Thus, we must rely on statistics, what the data can tell us, despite the flaw of acceptable risk of
mideading test results.

Also, CDR relies entirely on empirica results; that is, the data and only the data gpesks for itsdlf. Y ou can dways diminae highly
significant CDR models because they do not conform to current economic or other scientific theory.



EXAMPLE

CDR can easily generate 20,000 candidate models. With a 1/20 chance of fase positives (ALPHA=.05), there may be 1,000
satistica artifacts scattered throughout the complete list of generated models. Because you will be sdlecting only the top fitting
models, there is a better chance that these will not appear in the 10 “most sgnificant” models. Artifacts usualy do not adequately
fit the sample data and possess strong significance tests. However, there can be no guarantee.

The ranking method used in this paper, SBC, has no significance test, unfortunately. Thereis no measure of the probability thet a
top performing candidate is actually an artifact. For this reason, use a battery of sgnificance tests to gauge the probabilities of
spurious, highly ranked models.

For example, let y be a dependent variable and x1- x20 be possible independent variables. Constrain the models to a linear
equation of one variable and a congtant. The list of possble modelsis

Y=A1*X1+B1;
Y=A2* X2+ B2;
Y=A3*X3+B3:

Y=A20* X20+ B20;

Themodel selection criteria could be asfollows: rank the models by t score on Ai (wherei runs from 1 to 10) and select the two
models with the highest t scores, models 1 and 2. Suppose both t-tests suggest an aphaless than .05 (thereis only a 1/20 chance
of anincorrect conclusion).

For convenience, suppose the models with the highest t-scores are
Y=A1*X1+B1l and Y=A2*X2+B2.

A t-test with an apha of .05 meansthat the process generating the datawas actualy Y = B1, that isAlisactudly equa to 0.
Because Al = 0 has an empiricd dphaof only 5%, thisis an artifact. The odds of the t-test being wrong is 5%. The chances of
B1 equdling 0is5%. The test impliesthat B1 is most likely not zero. There are alot of plausible, non-zero coefficients for the
linear modd. Linear regression merely solves for the most likely coefficient fitting the data. A significant t-test does not say that A1
isthe exactly right coefficient. Ingtead, it says, the coefficient A1 ismore likely to predict the behavior of Y based on the behavior
of X1 plus acongtant (referred to above as B1). Thereis a 5% chance the t-test iswrong. That is, the underlying process
generating the datais Y=BL1, where actudly A1 = 0. It does not say that there is 95% chance that Al is exactly right. It merely
impliesthet it is extremdy unlikely for Al to equd O.

If the second model, Y=A2* X2+ B2, aso possesses a t-score whose aphais .05, then the chances of A2 actually being zero is
5%. The number of candidate models with t-tests with an aphaless than or equa to .05 does not change the probakilities on any
one modd being an artifact. The t-test takes each model and compares it to the evidence. Its merits are considered independent
of the other models under consideration. Their existence isirrelevant.

Now suppose we increase the number of possible models to 200 linear models of a single explanatory varigble:

Y=A1*X1+B1
Y=A2*X2+B2
Y=A3*X3+B3

Y=A198*X198 + B198
Y=A199* X199 + B199
Y=A200* X200 + B200;



Thelist of possible modelsin the prior example is a subset of the list of possible moddsin this example. Thus, we must produce
results at least as good as those found in the prior example.

Suppose we select models whose t-score on the linear coefficient must have an aphaless than or equal to .05. How many
candidates will we get? At least two (from the previous example) and probably more.

Suppose, out of these 200 models, there are now four candidates. This does not imply that the possibility of having an inadequate,
incorrect mode is double the chances of the previous example, which had only two candidate models. Each model, based on its
own merits, has the same statistica significance, an dpha of .05.

Actudly, alarger list of candidate models increases our chances of picking a more adequate model. Some of the candidates may
actualy have better fits; they may have coefficient t-tests whose dpha s are much less than .05. Some may have aphas of only .01
and are therefore more significant. Note: Highly significant top-ranked models are less likely artifacts and more likely reflect the
process generating the sample data.

Also, new candidates with excellent significance tests may suggest models previoudy unsuspected by results found with asmaller
base of models.

Therefore, doubling the size of the list of possible models does not double the chances of selecting an incorrect model. Doubling
the list of possible models may, however, double the chances for statistical artifacts to appear in the list. The significance test
applies to each candidate independent of all other models. We sdect the models that are most significant. The length of the list
increases our chances of finding the candidates with the highest individua significance.

Thetest is gpplied to each modd. The test isindependent of al other models under consideration. The more models, the better
your chances of finding a better fitting model, amodel with better significance tests. If the model you sdlect has at-test with an

aphaof .01, it doesn’t matter if you selected your model from alist of 10,000 candidates or 10 candidates. The probability of

your sdlected model having a non-zero coefficient remains .01. Y ou judge each model upon its own meits.

A large ligt of possble modelsis more likely to contain better fitting models than a subset of thislist.

Asadtrictly empirical method, CDR relies entirely upon patterns within the data. The resulting PROC ARIMA estimates of each
modd’ s coefficients are the most likely estimate given a sample of dataand amode assumption such as linearity of the
underlying system. Such estimates tend to minimize the errors between the fitted and actua values. However, “mogt likely” does
not imply exactly correct estimates. In fact, it implies nothing about correctness of the estimates representing the underlying
process generating the sample data. The most likely estimates merely outperform al other estimates by a goodness-of-fit criteria
such as the Mean Squared Error or the SBC.

However, every modd is a potentia artifact whether we choose it from a short list of only 10 models or along list of 20,000.
Given aspecific type of model, suppose 10% of the modds are artifacts. Hence, in ashort list of 10, there may be 1 artifact,
whereasin along list of 20,000, there may be 2,000 artifacts. On the other hand, both lists may contain no artifacts or al artifacts.
There is no way to know for certain.

Thelong lists afford you more protection. The long list contains al short lists. Thus, dl artifactsin the short list will gppear inthe
long ligt. If an artifact also produces strong significance tests, you are more likely to sdect it from the short list. Thelong list is
likely to produce models with goodness of fit and significance tests better than the artifact selected from the short list. Therefore,
the best performing models will perform at least as well and probably substantialy better then models from any short list.

We can use the significance tests to approximate the probability of an artifact in top performing models.

Giventhemodd: y = a* x + b, we want to test the probability that a> 0 isnot an artifact. Thistest is called a hypotheses test or

asignificance test. The process pretends the value for a = 0, that is, x has no red effect ony. So, weassumea = 0 and use at-

test to compuite the probability that the odds that the coefficient “a’ does not = 0 could occur by chance giving aactudly = 0. If

the odds of this occurrence for this data sample are low enough, we accept the aternate hypotheses, that is, adoes not = 0, x has
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an impact ony. Note: When the probability that a does not = 0 islow enough, we reject the null hypothesis. The question is, what
odds are low enough to justify accepting that “&’ is probably not equal zero. The default is usudly 5%. That is, given the
underlying processredly hasan “a’ = 0 but the modd and its associated significance test are not zero, we accept the fact that “d&’
does not = 0. We say that the odds are too low for this data sample to be generated from a process whose “a’ actually does = 0.
We are accepting a 5% chance of being mistaken. This probability of being mistaken is cdled the dpha, and the dphaisthe
probability acandidate is an artifact.

A large number of models will generate more high performing models whose adphaisless than 1%. This means, aisnot equa to 0
and the significance test implies that the odds of this data being generated from a process whose A actudly = O, isonly 1%. There
isonly 1 chancein 100 to draw a sample form this null process that produces a significant A. This occurrence is highly unlikely so

we usually accept the hypotheses that A does not equd zero.

Again, large samples and more models smply reduce the size of the dpha, the chances of an artifact.

Suppose we accept any modd in our list whose dphais less than 5%. Then out of each 20 modd's (deemed significant), we run
the risk of accepting an artifact. If our list is short, say 20 models, then there may be one artifact found in thislist. If we generate
20,000 models and accept candidate models with an apha < 5% then there may be 1,000 artifacts, models thet test well and fit
wal.

Hence, CDR, which produces lists of at least 20,000 dternative modes, will produce more artifacts than a short list of only 20
modds. If so, why use CDR?

The more models you generate, the lower the dphaislikely to be. A list of 20 may generate amodd whose dphais .05 but alist
of 20,000, which will probably locate al of the good fits, may generate many aphas < .05, such as .01 or .001. Significant fitslike
these are extremely unlikely to be artifacts.

A longer list of candidates is likely to reduce the dpha Thisis akey benefit of CDR. We see dl models and select those with the
best fits and the lowest aphas. Therefore, our top performing candidates are least likely to be artifacts.

The ARIMA regression models try to pick the most likely parameter estimates that minimize the total error between the model
predicted values (fitted) and the actud vaues. The closer the total of the absolute fitted values agrees with the actual vaues, the
better the model explains the sample data, and the more likely the modd truly represents the process driving the sample data
(assuming the sampleisindicative of the underlying process). In most ARIMA adgorithms, the absolute difference between the
fitted and actud al have equa weights. If the actud data has severd outliers, huge deviations from the underlying trend, the more
likely that artifact models will be accepted.
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Firg, graph the actua data. Examine them for regime shifts and huge outliers. If so, you can add indicator dummy or intervention
variables to represent these severe, abrupt deviations from the underlying pattern. For example, if ahuge deviation occurs a point
18, then you can add adummy variable that is al zeros except a point 18, whereitisa 1. Thiswill dleviate the powerful biases
outliers exert on mode significance tests and goodness of fit. Frequently, this smple technique will force dmost all artifacts from
congderation as candidate models. Their significant tests and goodness of fit will become inadequate.

Measures of goodness of fit measure how closdly the fitted values gpproximate the actua vaues. The sum of the differences
between the fitted and actua vauesis called the residuals. Graph the residuas. Are the differences, the individua residuds,
uniformly tight across al cases of the sample? Are there smal isolated segments where the residuals are tight and vast areas where
they are not? This can indicate a regime shift where the mode fits under certain circumstances and fails utterly in most other
circumstances. This model may be an artifact or indicate the need for dummy variables.

Replacing the R-square is the more elegant SBC. The time series could be a non-recurrent string of random numbers. The mode
may select too many parameters. The more parameters used, the tighter the fit, generdly, and the better the Significance tests. In
polynomia regression, it is possible to fit even a series of random numbers by increasing the degree of the polynomia, the number
of model parameters. The SBC pendizes modes for complexity, that is, the number of parameters. It favors smpler models.

The SBC takes into account the maximum vaue for alikelihood function (measured by the residuas errors), the sasmple sze
(aways an asset), and the number of parameters used in the model (aways a deficit). The SBC has proven more robust than the
mean square error (the simplex goodness-of-fit models) and the adjusted R-square. The SBC dlows you to compare modelsin a
long list of models with the top performing modes having the lowest SBC. Generaly, amode with alow SBC is much lesslikely
to be an artifact than a mode with ahigh SBC. SBC ranking of long lists will select the most robust and reliable models. A short
list may not even include the best models.

In summary, better models have higher significance tests, lower sum of squared residuds (or higher goodness of fit), and lower
SBC scores. The more models the better. A long list is more likely to contain a model representing the underlying process than a
severely limited short list.

Suppose revenues are actually dependent upon and generated by interest rates and Gross National Product. Suppose you opt for
ashort lig, leaving out GNP. Hence, this short list will never completely explain the data or its underlying generating process.
CDR will include models using interest rates but not GNP. That i, itslong list will subsume the possible shorter ligts, lists using
fewer possible variables.

The CDR generates models using dl combinations of al relevant variables. No robust modeds are | eft out by accident. The CDR
includes dl shorter lists. If you have considerable knowledge on a process, your resulting short list will beincluded in the CDR.
Also, the combinations of lags on explanatory variables and ARIMA structure can be overwhelming. CDR will consider al
possible lag structures automatically. Again, you consder al modes while diminating the possibility of missing many vaid modes.
Because the CDR lists al possible models, the models with the best goodness of fit and the fewest estimated parameters will be &
the top. A short list may miss some of these options and be less robust or vaid.
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Thelonger CDR list may aso point out strong models worthy of further study. Most model's have thousands of combinations of
explanatory variables and lags.

Probably, you are forecasting the same process frequently. Compare your new models to your tried-and-true models. Do your
new candidate s forecasts agree with the time-tested models? If the new models do not concur, then keep them separate and test
them on paper for an extended period of time. Make the new mode prove itsdlf.

Find note: Whether you use only one model or 10,000 models, the risks are exactly the same. CDR insures you are not missing
out on models with greater religbility and predictive power.

Bad Data Can Produce Bad Artifacts

Insufficient sample size often leads to Satistica artifacts. A smal sample may not be indicative of the normal behavior of a
process. A single sample out of millions of possible samples may be afluke, arogueif you will. Bad samples produce bad
artifacts.

Biased sampling strategies will dso lead to abnorma samples by design. Hence, any modd fitting this sample may nat fit the data
in most other (norma) samples.

Cluster sampling with a poor sampling strategy may lead to very dense data structures with highly localized information, which in
turn often lead to poor generaizations about the process  globa behavior. For highly clustered data, the resulting modd usudly
does not extrapolate beyond the sample.

Outliers are anomaous paints of data. They can arise from data entry error, bad news, or surprising economic stetistics. Because
the regression tries to minimize the square of residuds, outliers, which stray far from the underlying pattern, will have the highest
residuals. The dgorithm will place more weight on residuas associated with outliers. The mode may fit the outliers better than the
remaining data. Outliers are likely causes of artifacts. A good model best represents the norma behavior of the system. Outliers
may bias that focus toward the abnormal behavior often due to exogenous factors.

We assume a system behaves uniformly over time. It must be consistent and have a smooth, underlying trend. By the Centra Limit
Theorem, most samples will cluster around the mean system behavior and these samples most likely produce modes that best
represent the system’s average behavior. When a system’s structure and behavior change abruptly, this changeis called aregime
shift or an intervention. Without taking precautions, our single model may attempt to fit two different patterns of behavior. In most
cases, the model will produce a weighted average of the separate modes representing each regime. The weights are determined
by the percentage of the sample found in each regime. Such compromised models are usudly inadequate and aso produce poor
forecasts.
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This section discusses detection or avoidance of artifacts. Repeated sampling is the best protection. If we cannot acquire new
samples and the origina sample is deemed large enough, then we can run the model against sub-samples. These schemes are
cdled jack-knifes and bootstraps. Their useis controversid and they will not be discussed further.

Artifacts can dso fail to accurately model subsets of agiven sample.

Leave out the last four points and use the model on the remaining data to predict the known but missing points. Y ou could dso
repegt this process by reversing the order of the time series and rerunning this test. Purportedly, adequate models should be able
to closely approximate or predict the missing vaues in either direction because we must assume the underlying process has not
changed over time.

SAS/ETS PROC ARIMA provides an additional, powerful tool. Researchers can aso use the back-forecasting option BACK.
For example, if you specify a LEAD option equal to four time periods to be forecast, you could instruct PROC ARIMA to start
forecasting before the end of the input data. This smulates forecasting data, alowing you to measure the mode’ s performance
againgt known outcomes. Compare forecasting results with the equal BACK and LEAD vaues of existing models and candidate
models.

A Suggested Battery of Significance Tests

To evauate a candidate model from the CDR ligt, test the residuas for model adequacy. Thet is, test how well the modd accounts
for the behavior of the dependent variable, with the Ljung-Box Q test, the Random-Walk RW test, the Generalized Durbin-
Watson test. Plot the AFC, IAFC, and PAFC. They should al decay rapidly to vaues satisticaly equivaent to zero, thet is,
autocorrelations of the residuas exceed +/- 2*rt(T), where T isthe sample size.

The Ljung-Box, one of the most widely used significance tests for modd adequacy, examines the residuas over time. It tests for
departures of the error’s ACF (auto-correlation function).

AutoReg provides the RW and higher order Durbin-Watson diagnostics.

The SBC baances goodness of fit against smplicity. More complex models with more estimated coefficients are pendized more
heavily than smpler models. However, parsmony isa principle for mode sdection, not aphysica law. The underlying system may
require a complex representation. Hence, check candidates ranked by SBC against the same list of models ranked by the Mean
Squared Error (which is purely a measure of goodness of fit without regard to parsimony).

Check the R-squared, the percentage of the variation in the dependent variable explained by the model against expected or
required forecast accuracy.

Compare the coefficients and lags of each input variable in the new candidate model againgt corresponding coefficients and lagsin
existing models that are time-tested or based on economic theory. Compare the SBC of the most religble existing models and the
best fitting mode found from CDR.

Use the t-test to measure the statistica significance of each coefficient of the candidate model. All of the coefficients should have
absolute t-values greater than 2.
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If your modd uses past behavior of the dependent variable as aleading indicator in the form of moving averages and
autoregressions (ARMA terms), then you must run the Augmented Dickey-Fuller unit root test. This can provide protection
agang explosive gain from the moving average and autoregressive terms. (For details, refer to the macro %DFTEST.) Most
likely, the best CDR models will employ both explanatory variables aswell as ARMA terms. In this case, run the mode without
the ARMA terms and then run %DFTEST against the resulting residuas. If the %DFTEST indicates thet the resduds are
gationary, then the full mode (which employs both the explanatory and ARMA terms) should be employed.

Collinearity poses computationa problems often leading to spurious results. As an additiona precaution, test for collinearity with
the SSINGULAR=1E-5 (and even 1E-4) and run candidate models with PROC MODEL to obtain collinearity diagnostics.

Many complex systems evolve over time. Older datamay contain patterns inconsistent with more recent data. Economists often
refer to such changes as “regime shifts’ because of the radical changesin policy from one presidentid or congressiond regimeto
the next. While visudization techniques are more reliable, there are severd worthwhile satistica tests. Firgt, you can smply split
the datainto two consecutive halves and run PROC ARIMA on each of these data sets using the same variables and ARMA
terms as found in the candidate mode. Theoreticdly, the coefficients should be statistically equa. Y ou can ingpect the coefficients
for yoursdlf, or you can rely on forma significance tests such as the Chow test (which is an F-test) or the Watson-Davies.

Heteroscedacity occurs when the variance of the errors vary over time. Because regression assumes a constant variance, least
squares estimates may have deceptively high significance tests. In PROC AUTOREG, specify the ARCHTEST option to detect
this phenomena.

Further Detection of Possible Artifacts with Visualization

The mind’s eye can spot nuances and subtleties in the data that are often missed by satistical diagnostics because of the redtrictive
assumptions necessary to construct models and tests. Moreover, graphs apped to the intuitive powers of the mind.

Outliersin the dependent and explanatory variables can bias al estimates and statistical tests. Because regression attempts to
minimize the M SE, regression agorithms may inadvertently bias the fit to the outliers rather than to the underlying trend.
Unfortunately, casua ingpection of grgphs of the raw data are not sufficiently intuitive for outlier detection.

I recommend filtering your data with the Median Smoothing technique. Y ou then graph the filtered data as a curve with the raw
data as points. Alternatively, you can subtract the raw data from the filtered data and graph the absolute values of their difference.

Median Smoothing detects a pattern for each neighborhood of points, pulling al of the deviant pointsin line with the loca pattern.
Mot likely, median smoothing will diminate severe noise while emphasizing the underlying pattern in the data. Unlike globa
representations of data, this method is not vulnerable to regime shifts, level shifts, or aseries of outliers. Hence, these problems are
more easily observed.
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If savere outliers are detected, you should manually adjust outliers to more reasonable vaues and rerun the CDR on this
“winsorized” data set. | do not recommend using impulse interventions because the SBC will penalize every outlier adjustment,
possibly disqualifying a reasonable model for system behavior under norma condiitions.

If regime shiftsor level shifts are detected, you should employ intervention variables, as discussed in the section entitled
“Intervention Models and Interrupted Time Series’ in Chapter 3, "The ARIMA Procedure” SAS/ETS User’'s Guide, Version 6,
Second Edition.

What follows isavisudization of the problem and my solution to the problem.
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. The outlier breaks from the 8 points
on either side of it.
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Outliers are an abrupt discontinuity when compared to the
points around it. It is a local phenomona.
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Because an outlier 15 an abrupt break with the pattern
formed by 1ts neighbors, we can often use the pattern
formed by 1ts neighbors to correct the outlier

Fermat's local median bisection can correct outliers

For example, the outlier occurs at observation &

We could take the 3 points preceding cbservation 3

and the 3 pomts after # and compute their median,

which 15 16, the correct number,

The number of netghboning points we take from

either side of the outlier 15 called its netghborhood

and the nurmber of points in this neighbothood (excluding the

Cutlier) divided by the number of pomts in the entire set 15 called the span. In this example, we are usmg
a span of 6/15 or 40%. The smooth algorthm cross validates the median by comparing the local

neighborhood median with different spans

This simple method 13 very robust, that 15, 1t can correct even large outliers automatically

30, an outlier 15 a break m contmuity with ts netghbors and the smooth algonthm uses the
pattern of tts mmediate netghbors to automatically cotrect this cutlier
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Handling Cutliers: Here the Explanatory Varnable, 20, completely accounts for and explains the outlier

at observation 25 in Y. That 15, ¥ as a function of £ completely accounts for all of the points in ¥ mcluding

the outlier at observation 25

iy ._,.-'
£ ,....-"'.
o) i .
(- ."'..
—] _....-"'.
Ll il
o 10 20 30 40 S0
Time series ¥ has an
outlier at 25
] ‘_,.-'
] .-..-"'..
- ) L -
(el .‘,."
— ] _-...-"'.
= -
o 10 20 30 40 S0

0y 5 68§

o 10 20 30

Tune series ¥ has an cutlier
at 25

Y asa function of 2,

in this case, y=x

the outlier at = completely

explains the cutlier of v and

hence the model v={x) will not need arny
further adjustments.
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Cutliers Identified by Local Mdedian Bisection hdethod

Since it 15 easter to spot outliers when the data 15 essentially honzontal, you can
use theresiduals of v - median smooth(y). The outliers are 1dentified by date.
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L o] EEGIME SHIFTS
-~
0
p o A Regime Shift represents a “permanant” and abrupt
e ] 0 change in the pattern of pomts. An outlier is a temporary
~ . -0 shift in the pattern of points formed by 1ts neighbors.
| 0 ’ A Regime Shift 15 a departure from a previous pattern.
= L Hinge Point The Pattern shifts at the hinge pomnt. There is a slope
o ] Lg-07 " of 1 before the hmge point at observation & and a slope
_ La-0” ° of 2 after the hinge point.

E 4 b & 10 1214 While all 15 chzervaticns in the tirne series cannct be

represented by a linear regression, the time series
can be represented by 2 piece-wise lmear regressions,
one for each regime.

Mote that each regime occurs over adjacent observations Inthis example, Regime 1 occurs from cbservations
1 thru 7 and Regime 2 occurs from & thru 15 Each regime occurs over a sub-series, each regime occurs over
contiguous subsets of

This appeals to our mntuition because we assume that some underlying factors that influence y have changed radically.
It could be a change in political regimes 1n Congress or a new President. Global warming may permanently

effect the price of wheat or natural gas. An aging population has completely altered the investment strategies in the
I3 financial markets. Thus, these changes occur over long pertods of time and over contiguous sets of time
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Example 1

Jo-o-o-oT0o Hinge Point

g-o"o"oTQ0TO0T0TO0

2 4 b g m 12 14

X

Example 1 represents a regime shuft

In this case the mtercept has changed

from 1to 2. Before the hinge pomnt,

all of the points are 1, that 13, they

form a consistent pattern over a contiguous
subset of z, from 1 to 7. And after thehinge
pomt, they form a different pattern, once again
over a contignous subset of x, from observations
8to 16
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Fattert 1

ANANA NN

Fattern 2
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Example 2 1snot a Regime Shift because
its 2 patterns are interspersed over the
observations. Pattern 1 occurs at all

odd values and Pattern 2 occurs over all
even values But each pattern fails to ocour
over 3 contiguons subset of



In Dvynarmic Regression, we ry to explam ¥ 's behavior on the past behavior of ¥ and Explanatory Variables,
often called “Leadmg Indicators”. Bince Dynarmic Fegression 15 a Multivariate Linear hodel],

¥ 15 a Linear Function of 37 and variables created trom Lags on Y. The model explains more of ¥'s behavior
with a leading indicator rather than a dummy variable

_ _ 0 . ] 0
o Eegime Shift on ¥_ | —© e _ _ . "
o Regine Shuft on 3 o~
] /I:I e ] o u]
—= e - — /
r H_FD-—’D_PFD ir H_FD-—’DHD
n] 0 o~ a
2 4 G 2 10 12 2 4 G 2 10 12
ohservations ohservations
Cus Y The Linear Regression of ¥ agamst X perfectly
explams T, Because the Regime Shifts m X and T
are carrelated, 30 also explains the Regime Shift in 1
o " The Correlated Regime Shifts caused the Gap
] Recime Ga o o i1 the Graph of ¥ asa linear function of 37 but 1t also
a P b © - preserv ed linearity.
] / “What would happen ifthe Regime Shifts do not
oo" match? Or, worse, if 2 had a Regime and Y did not?
LT u]
o u]
= : , : : Iy this paper, Thope to show how to handle this
gquestion.
] 10 15 20
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This example shows the devastating power of distortion a regime shift in the explanatory wvariable 32
can have over v=fix) A later section will show how to handle this nasty sitmation with differencing..

¥ 15 a Linear Titne Series
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But, ¥ as a function of 2 15 not linear.
0 ] 10 15 20 25
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315 a Plece-VWize Linear Tine Series
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¥ asa Time Series 3 as a Tune Series A5 a function of 3,

with the column labeled T with the column labeled T both coluimns must be sortad
representing time periods Maote the breals in the in ascending order on X
1 thru 20 pattern start with T=11
T % T 30 - ¥
1 1
5 3 11 05 11
)
3 1 1
i 4 33 15 12
4 4
5 2 2
é & > 3 2.5 13
() & 3 3
[ ER 35 14
a2 8 -
9 9 & 8 4 4
2 7 45 15
1010 10 10 5 5
11 11 11 0.5 55 16
1212 12 1.5 & 6
13 13 13 2.5 65 17
14 14 14 3.5 77
1515 15 4.5 75 18
1616 16 5.5 g 8
1717 17 6.5 25 19
s 13 18 7.5 ¢ 9
1713 19 8.5 95 20
20 20 20 9.5 10 10
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& Regune Shift in X has a large discontimuity (a level shift) at tune =25 At that time, 3 jumps from
20to 40 When T 1z graphed agamst 2, the pawrs (3, T ) are sorted by the values of 20 Thus, on the
X vs Y graph, there 15 line connecting the poimnts between 2 =20 and 2 =40. This gives the illusion
that X vs ¥ 15 Non-Linear
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'-.Because of the
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o
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= lope
[ =] Ij:ﬂlzﬂ
D,:.jII'
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time

T now appears non-linear
because X controls the

spacing between T values.

Inreality, X vs ¥ 15 piece-wise linear and we can
still use dynamic plece-wise regession to
construct a tight fitting model
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Here iz the titne series plot of median smocthed 30 Tt has 4 Regimes with fuzzy boundaries
We may want to combine Regimes 1 and 2.
In extrap olating bevond the historic data, the question becomes: where are we in regime 4.

From observations 1 thru 30 (60%% of the time), 2 was relatively stable, forming almost a stationary wave.

However, from observation 32 to 44, X climbed steadily and sharp by

Regime 1 Regime 2 Fegune 3 O o Jf
Observations 1-12 Observations 13-32 Ohs. 3344 O o,
o]
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We carnot determine the Rregimes directly from the graph of 3 vs ¥ because 3 has many
separate intervals of observations with nearly oscillating around the same level.

When we sort the pairs of (207 1n the historic data set by the values of 3, we get the typical
chaotic patterns I attempted to arrive at a long tenm trend by selecting the tops of Fegime 1
and the bottoms of Regumne 3 without success Meither the tops nor bottomes are from
contignous observations mn the time-series of 20

. . @D
Fegime 17 Eegmme 27 o
0
,/( 5 o 0l i H
O The Bottoms
-'_'_'_'_'_,_,_:-'—" I:]
. 7 0
Median o —
Smooth — Regime 37
o "

06 0.7 0.8 0.9 1.0 1.1
Median Smoocthed 3
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Noise generated by outliers and level shifts frequently cause spurious models with deceptively lower MSE’ s than more
representative models. That is, many artifacts model noise rather than the underlying pattern. Running models on median-
smoothed, filtered datawill eiminate many artifacts. Erroneous models thet rely on exogenous changes for their strength will no
longer have a unfair advantage over more reliable candidate models. In other words, we want to mode the behavior of asystem
under norma or expected conditions rather than its response to occasiona or random anomaies produced by influences outside
of the system.

Often outliersand level shifts are not due to bad data. They often indicate the influence of variables not included in the systems
andysis. Note the date of an outlier and try to determine what events may have triggered shocks to the system. Itemsin the news
may dert you to abnorma behavior unpredictable by regresson.

Also, PROC ARIMA describes the global or average responses of the system over a pan of time within which datawas
collected. However, PROC ARIMA projects its forecasts based on the most recent data; that is, current data servesasa
springboard for future estimates. Consequently, you should be particularly vigilant concerning recent abnorma behavior in the
dependent and explanatory variables. Severa outliers or anomalies in recent data may indicate a“turning point” where asystem’s
dynamics shift radicaly, invaidating prior models based on older data generated by different systems dynamics.

Team Effort
Forecasting is an art best practiced as ateam effort. If you know people who possess reliable knowledge acquired from years of
study and experience on process behavior, then let them critique your new models. Dissent is hedithy. It isthe last line of defense

againgt spurious models. CDR-based ARIMA forecasts are redlly a starting point for discussion, and the find forecast is arrived at
by consensus. The human factor is critical.
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Three Definitions Used in Combinatorics

Definition of afactor A discrete, finite set of values describing the attribute of an entity or system. In demographics,
the factor gender consists of the set {M, F}; .
A factor in a CDR mode is the possible lags on the dependent varigble.
In our example, this factor, the possible number of lags on the AR term, would consist of the
s«t{0,1,23,4};.

Definition of the crossproduct ~ An array formed from two or more factors. Each element of such an array isreferred to asa
“tuple’. Each entry in a cross product is demarcated with “ (" and “)”. Each entry in atupleis
referred to as a component, and these entries are separated by “,” with the first component
corresponding to the first factor, the second component corresponding to the second factor,
and so on.

Example of a cross product of two factors

In 1629, Fermat calculated the odds of “winning on field bets’ at the game of dice by listing al possible combinations. Each die,
d1 and d2, can assume values from 1 to 6. The cross product for a pair of dice contains 6x 6=36 tuples.

Cross

Product Sum of the components within each tuple

di\d2 1 2 3 4 5 6

1 (LD (12 (L3 (L4 (L5 (Q 6); @0 M@)o 6 O

2 2D@2223EH@25E26); ® @) 66 0n 6

3 (31323334935 G 6); A oe6eme o

4 (4,1 (4,2) (4,3) (4, 4) (4,5) (4,6); ) 6 () © 9 (10

5 (5.1 (52 (5,3 (54 (5,5) (5 6); ©® (7) (8 (9 (10) (11)

6 (6,1) (6,2) (6,3) (6,4) (6,5) (6, 6); (™ (® (9 (10) (12) (12)

Fermat then evaduated the probability of a particular outcome by counting the number of occurrences of outcomesthat sumto a
particular number. For example, out of the 36 pairs, 3 pairs sum to avaue of 4 (note the highlighted entries). Therefore, the odds
of ralling a pair of dice that sumto 4 is 3/36 or 8.33%.

Outcome of d1+d2 Probability |  Outcomeof di+d2 Probability
2 1/36 | 8 5/36
3 2/36 | 9 4/36
4 3/36 | 10 3/36
5 4/36 | 11 2/36
6 5/36 | 12 1/36
7 6/36 |
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Thefollowing DATA step will generate the cross product with two parameters. dl isafactor ={ 1to 6} and is called the first
component of thetuple. Likewise, d2 isafactor {1 to 6} and is called the second component of the tuple.

data di ce(keep=dl d2);

do di=1 to 6; [* iterate through al possible values of thefirst factor  */
do d2=1 to 6; [* iterate through al possible values of the second factor */
out put ;

end; end;

,run;

Historic Footnote: In 1687, Jacob Bernoulli perfected Fermat=s original method. Wealthy Swiss and French gaming
establishments paid for his research in order to change the rules of shooting dice to slightly favor the casino.

Definition of the combination Unique groupings of the eements of a set; the number of eements alowed in each grouping is

referred to as the Order of the Combination,

Example Condderthest S={ a b, ¢, d}. Wewill find dl of set S s combinations of order 2.
The SAS DATA dep to generate the combinations from the set { a, b, ¢, d} would be asfollows:

data c2(keep=conbo);
array S[4] $1. ("a", "b", "c", "d");

doi = 1to 4

do j= (i+1) to 4; /* j > i to prevent a duplicate selection mde
previously by the loop on i */

do k= (j+1) to 4; /* k >j to prevent a duplicate selection mde
previously by the loop on j */

combo= "(" || compress(S[il) || ". " || conpress(S[j]) [| ", "
compress(S[k]) || ")";

out put ;

end; end; end;

run;

Theresults are
(&b, c), (ab,d),(acd),bcd

The Building Blocks of Combinatorics

With the cross product and combination DATA steps (above) as building blocks, we will generate dl of the ESTIMATE
gatementsin PROC ARIMA. With smple variations of these two DATA steps, we will produce the list of al possible models.
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Practical Examples. Doing a For ecast

Note: We have taken logs of dl varigbles in the data set lyxx.

QTR ATGR WBAG WSCONS WSFIRE  WsGOVT WSMANU WM N WSTCU  WSSERV  WBRETL ~ WBWHL  DEFL
84QL 21.993-2.659 -0.476 -0.942 0.990 -0.448 -0.569 -0.327 0.541 -0.066 -0.889 4.280
842 22.027 -2.645 -0.448 -0.919 0.997 -0.416 -0.557 -0.296 0.582 -0.027 -0.851 4.289
848 22.075-2.631 -0.440 -0.879 1.019 -0.387 -0.534 -0.285 0.619 -0.013 -0.828 4.296
844 22.038 -2.631 -0.499 -0.860 1.028 -0.380 -0.528 -0.284 0. 636 0.005 -0.810 4.304
85QL 22.062 -2.604 -0.445 -0.816 1.061 -0.340 -0.526 -0.276 0. 651 0.018 -0.792 4.314
852 22.077-2.590 -0.440 -0.792 1.063 -0.326 -0.516 -0.270 0.682 0.027 -0.770 4.324
858 22.126 -2.590 -0.448 -0.774 1.085 -0.311 -0.541 -0.260 0.691 0.058 -0.774 4.333
854 22.119 -2.604 -0.425 -0.757 1.090 -0.293 -0.562 -0.255 0.719 0.075 -0.761 4.343
86QL 22.108 -2.617 -0.448 -0.726 1.111 -0.281 -0.594 -0.259 0.747 0.085 -0.774 4.350
862 22.081-2.645 -0.459 -0.724 1.103 -0.281 -0.742 -0.259 0. 756 0.089 -0.790 4.351
868 22.119 -2.645 -0.503 -0.701 1.122 -0.265 -0.849 -0.274 0.777 0.087 -0.790 4.359
86Q4 22.055-2.645 -0.506 -0.673 1.128 -0.263 -0.870 -0.264 0. 801 0.102 -0.787 4.367
87QL 22.081-2.645 -0.564 -0.681 1.176 -0.278 -0.906 -0.254 0. 808 0.110 -0.761 4.379
872 22.030-2.617 -0.576 ~-0.660 1.166 -0.250 -0.842 -0.246 0. 839 0.123 -0.749 4.388
878 22.138 -2.577 -0.555 -0.658 1.171 -0.227 -0.856 -0.242 0. 857 0.151 -0.726 4.399
87Q4 22.118 -2.551 -0.546 -0.662 1.186 -0.188 -0.805 -0.223 0. 909 0.148 -0.705 4.410
88QL 22.158 -2.513 -0.587 -0.713 1.202 -0.174 -0.810 -0.248 0. 890 0.162 -0.717 4.416
882 22.117 -2.501 -0.560 -0.650 1.209 -0.150 -0.787 -0.214 0.948 0.168 -0.675 4.428
888 22.216 -2.489 -0.553 -0.625 1.177 -0.135 -0.823 -0.208 0.976 0.187 -0.658 4.441
884 22.146 -2.465 -0.553 -0.635 1.216 -0.092 -0.832 -0.203 0.981 0.196 -0.641 4.453

Note: Where QTR means the fiscd quarter, the suffix WS stands for Wages and Sdaries
and ATGR (the response variable) means Adjusted Taxable Gross Receipts.

All of the data used in these examplesis derived from the last 55 quarters of the New Mexico economy. Because much of the
state=s economy (as measured in dollars) grew exponentidly from inflation and population growth, the log transformation is
gopropriate. Also, in ten years of testing, the log transform has performed well.

Establishing a Benchmark for Model Accuracy: TheUnivariate BJ ARIMA Modée

Because of its smplicity and elegance, every CDR candidate model must exceed the accuracy of the univariate BJARIMA. The
BJARIMA modd relies entirely on past behavior to forecast future behavior of the dependent varigble. After 20 years, it is il
accepted as the benchmark modeling paradigm.

The univariate ARIMA will help congtrain the number of possible AR and MA vaues in the dynamic regressons. Better
condraints will reduce the number of combinations that PROC ARIMA must evauate.

If the dynamic regresson uses an ARIMA component, particularly an MA component, then the dependent variable must be
cointegrated with the explanatory variables (and their lags).

Example of aunivariadte BJARIMA

Adjusted Taxable Gross Receipts resembles a sales tax with an extremely broad base. It appliesto dmost dl find sdesat theend
of the chain of commerce (that is, it is not a pyramid tax). We want to model the ATGR based solely on its past behavior.
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First, we must apply transforms that make ATGR staionary. In particular, the mean and al satistics based on the second moment
must be invariant over time. We applied alog to ATGR .

proc ari ma data=l yxx;
i var=atgr(1l) stationarity=(adf=(4));

run;
ARIMA Procedure
Name of variable = ATGR.
Period(s) of Differencing = 1.
Autocorrelations
Lag Covariance Correlation -1 98 76 5432101234567 891
Std
0 0.0013486 1.00000 I I B I
0
1 -0.0007685 -0.56981 I e I ) I
0.134840
2 0.00042225 0.31310 | } Relaiataiatal® I
0.173171
3 -0.0005321 -0.39454 | falsiaisdadabaiad i I
0.183175
4 0.00077771 0.57667 I } I************ I
0.198024
5 -0.0006342 -0.47025 | Sadadakadadabadaded | i I
0.226509
6 0.00036799 0.27286 | . Refalataded ) I
0.243613
7 -0.0004354 -0.32285 | ; Sabsiadadaiad i I
0.249108
8 0.00047701 0-35370 | . Rsfaiaiaiaiaia NN I
0.256603
9 -0.0003097 -0.22964 | . fadadadadad i I
0.265319
10 0.00015593 0.11562 | . | *=* . |
0.268909
11 -0.0003072 -0.22778 | . fadadadadad i I
0.269811
12 0.00031396 0.23280 | . Refalataded ) I
0.273285
13 -0.0000974 -0.07221 | . *| . |
0.276867

." marks two standard errors

Inverse Autocorrelations
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Type

Zero Mean

**Single Mean 4

Trend

Autocor
To Chi

Lag Square DF Prob

6 73.10 6 0.000
12 100.43 12 0.000

Augmente

Lags RHO Prob<RHO

-5.3888 0.1050
-36.5771 0.0004
-48.8250 0.0001

relation Check for White Noise
Autocorrelations

-0.570 0.313 -0.395 0.577 -0.470 0.273
-0.323 0.354 -0.230 0.116 -0.228 0.233

d Dickey-Fuller Unit Root Tests
T Prob<T F Prob<F

-1.4060 0.1466 -- --
-2.7656 0.0704 3.8283 0.1272
-2.9338 0.1610 4.3079 0.3457

** Without the dummy variable to account for seasondity, this ADF result is close enough.

The ADF results suggest var = atgr(1). The acf chart decays exponentidly to insignificance at about the fifth lag. And the PACF
cuts off after two lags. It looks like an AR(4) process. Seasondlity is handled with a dummy variable rather than a deterministic

dif = (1,4) or dif = (1)(4).

A standard modd with asingle difference, an intervention dummy variable DUMQ3 (which has a1 at the third quarter of every
year and 0 otherwise) produces good working results.

Edimate p=(1,4) input = (dumg3);

Par anet er Esti mat e

0. 0028497
ARL, 1 -0.46379
ARL, 2 0. 25118
NUML 0. 04014

Approx.
Std Error T Ratio Lag Variable Shift
0. 0038104 0.75 0 ATGR 0
0.11831 -3.92 1 ATGR 0
0.11833 2.12 4 ATGR 0
0. 01031 3.89 0 DUMXB 0

Strong T-Tests for the AR terms and the dummy seasonal variable

* Benchmark
SBC

Constant Estimate =

Variance Estimate
Std Error Estimate
AlC

SBC =

Number of Residuals=
* Does not include 1

0.0034556

0.00061439
0.02478688

= -246.78816%*

-238.75883* The BJ ARIMA benchmark

55
og determinant.
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Correlations of the Estimates

ATGR ATGR ATGR DUMQ3

Variable Parameter MU AR1,1 AR1,2 NUM1
ATGR MU 1.000 0.044 -0.013 -0.697
ATGR AR1,1 0.044 1.000 0.231 -0.070
ATGR AR1,2 -0.013 0.231 1.000 0.023
DUMQ3 NUM1 -0.697 -0.070 0.023 1.000

These are excellent cross correlations between the parameters.
Autocorrelation Check of Residuals
To Chi Autocorrelations
Lag Square DF Prob
6 2.80 4 0.591 0.029 0.003 0.044 -0.025 -0.199 0.042

This model=s residuals are close to white noise. This is an acceptable
benchmark BJ ARIMA model.

Running the Combinatoric Dynamic Regression

We want to model adjusted gross receipts taxes (ATGR) as a function of only two Sectors. In this model, we will rely upon only
the mgor revenue-producing sectorsin this state’' s economy:

List of W& S (Wages and Saaries) Sectora Explanatory Variables:

wscons W& S Construction wdire W& S Finance, Insurance, Red Edtate
wamanu W& S Manufacturing wamin - W&SMining
wsreta W& SRetail Sdes wsserv - W& S Service

wstcu W& S Transportation, Communications and Utilities

with two factors gppearing in al modes (hence their inclusion will not increase the number of combinations):
Jefl GDP Deflator
duma3 aseasona intervention for the strongest, the third quarter of every year.

Note: W& S means Sectoral Wages and Salaries earned in New Mexico.

We want apair of lags, one for each explanatory variable, that produces the “best” fit as measured by the SBC.

Format of the Model: ESTIMATE input = (lagl$ X1 lag2$ X2 DEFL DUMQ3);
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Congtraints.

2 W& S sectoral explanatory variables (denoted by X1 and X2) must be used in each modd.
X1 and X2 can have asingle lag varying from O to 5 quarters.

Each lagged cross correlation should exceed 0.65.

Number of Moddsin the List of Combinations:

The number of combinations of 2 distinct sectors drawn from a set of 7 sectorsis 21.
The size of the Cross Product of the 2 lagsis6x 6 36.
Total Number (1) x(2) 756.

Generatethe List of Combinations of Models (The MOD File)

data nod(keep=est);

array vv[9] $8.

(Awscons","wsfire", "wsmanu", "wsm n", "wsretl", "wsserv","wstcu", "defl","dumm3");
array syn[ 6] $. (A@ "1", "2", "3", A4", A5");

retain nodel no O;

/* Conmbi nation Phase - select a pair of W&S expl anatory vari abl es */

do vl=1 to 7; /* select the first wage and salary explanatory variable */

do v2=(vi1l+l) to 7; /* select the second uni que wage and sal ary explanatory */

/* variabl e */
/* Construct a Cross Product for a pair of I|ags */
do sl1=1 to 6; /* select a lag for the first explanatory variable */
do s2=1 to 6; /* select a lag for the second explanatory variabl e */
nodel no=nodel no+1; /* assign a Mdel Ildentification Nunber */
est=conpress(@od@ || nodelno)|| @ Al|"estimate input=("
|| compress(synsl]) || @ A || conmpress(vv[vl])||" " || conpress(syn]s2])
|| @ A || conpress(vv[v2]) || " defl dumg3);";

out put ;
end; end; end; end;

run;
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Here is a partial list of conbinations (out =nod):

nod1: estimate input=( wscons wsfire defl dung3);
nod2: estimate input=( wscons 1 wsfire defl dung3);
nod3: estimate input=( wscons 2 wsfire defl dung3);
nod4: estimate input=( wscons 3 wsfire defl dung3);
nod5: estimate input=( wscons 4 wsfire defl dung3);
nod6: estimate input=( wscons 5 wsfire defl dung3);
nod7: estimate input=(1 wscons wsfire defl dung3);
nod8: estimate input=(1 wscons 1 wsfire defl dung3);
nod9: estimate input=(1 wscons 2 wsfire defl dung3);
nmod10: estimate input=(1 wscons 3 wsfire defl dung3);
nmod11: estimate input=(1 wscons 4 wsfire defl dung3);
nmod12: estimate input=(1 wscons 5 wsfire defl dung3);
000 000 000
nmod250: estimate input=(5 wsfire 3 wsmanu defl dung3);
nmod251: estimate input=(5 wsfire 4 wsmanu defl dung3);
nmod252: estimate input=(5 wsfire 5 wsmanu defl dung3);
nod253: estimate input=( wsfire wsm n defl dung3);
nod254: estimate input=( wsfire 1 wsm n defl dung3);
nmod255: estimate input=( wsfire 2 wsm n defl dung3);
nmod256: estimate input=( wsfire 3 wsm n defl dung3);
nmod257: estimate input=( wsfire 4 wsm n defl dung3);
000 000 000
nmod746: estimate input=(4 wsserv 1 wstcu defl dung3);
nmod747: estimate input=(4 wsserv 2 wstcu defl dung3);
nmod748: estimate input=(4 wsserv 3 wstcu defl dung3);
nmod749: estimate input=(4 wsserv 4 wstcu defl dung3);
nmod750: estimate input=(4 wsserv 5 wstcu defl dung3);
nmod751: estimate input=(5 wsser v wst cu defl dung3);
nmod752: estimate input=(5 wsserv 1 wstcu defl dung3);
nmod753: estimate input=(5 wsserv 2 wstcu defl dung3);
nmod754: estimate input=(5 wsserv 3 wstcu defl dung3);
nmod755: estimate input=(5 wsserv 4 wstcu defl dung3);
nmod756: estimate input=(5 wsserv 5 wstcu defl dung3);

Save SASETS Statements

Next, export the SAS data set MOD to a text file.
Open thisfilein aword processor and copy the MOD text onto the clipboard.

Use the SAS/ETS program below to evauae dl of the modes (ESTIMATE statements):

filenanme newout "d:\la\fermat.txt";

proc printto print=newout new,

proc ari ma data=l yxx;

identify var=atgr crosscorr=(WSCONS WSFI RE WSMANU WM N WSRETL WSSERV WSTCU
DEFL DUMQ3) noprint;

/* next, paste the clipboard text fromthe word processor here */
run;

proc printto;

run;
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/*

extract the nodel

data xx(keep=nodel no SBC);
retain nodel no O;
infile "d:\la\fermat.txt";

i nput

zz $97.;

ii=index(zz,"SBC");
(ii NE 0) then do;
pp=i ndex(zz,"=") +1;
SBC=i nput (substr(zz, pp), 11.);
nodel no=nodel no+1;
out put;
end;

if

nunber

proc sort data=xx out=rank;

by

SBC;

proc print
run;

dat a=r ank;

and resulting SBC from PROC ARI MA out put

Here are the top 10 models ranked by SBC as a measure of goodness of fit:

MODELNO
80 -269. 442
79 - 266. 886
73 - 266. 462
74 - 265. 581
182 -263. 801
188 -262. 899
181 -262. 427
37 -262. 055
109 -260. 924
1 -260. 116

SBC

Cor r espondi

esti
esti
esti
esti
esti
esti
esti
esti
esti
esti

mat e
mat e
mat e
mat e
mat e
mat e
mat e
mat e
mat e
mat e

ng Estimte Statenments

np
np
np
np
np
np
np
np
np
np

ut=(1
ut=(1
ut =(
ut =(
ut =(
ut=(1
ut =(
ut =(
ut =(
(

ut =

wscons
wscons
wscons
wscons
wscons
wscons
wscons
wscons
wscons
wscons

1

N

wsm n defl dung3);
wsm n defl dung3);
wsm n defl dung3);
wsm n defl dung3);
wst cu defl dung3);
wst cu defl dung3);
wst cu defl dung3);
wsmanu defl dung3);
wsr et | defl dung3);

wsfire defl dung3);

Find the ESTIMATE statement corresponding to amodel number by looking it up in the MOD.TXT file.

Find the ARIMA listing corresponding to a model number by looking it up in the FERMAT.TXT file.

Validate Candidate Modd - ID 80
Parameter Estimate StdError T Ratio Lag Vaiable Shift

MU

NUM1
NUM2
NUM3
NUM4

17.38765
0.26704
0.10670
1.12523
0.02969

0.12331
0.01864
0.02799
0.02680
0.00566

141.01

14.33
3.81

41.98
524

[oNeoNeNoNe]

ATGR
WSCONS
WSMIN
DEFL
DUMQ3

We note that the T-ratios are highly significant a an dpha < .01!

The correlaions between the coefficients are low.
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Correlations of the Estimates

Vaidble ATGR WSCONS WSMIN DEFL DUMQ3

ATGR 1.000 0.631 -0.075 -0.992  -0.032
WSCONS 0.631 1.000 -0.637 -0.683  0.007
WSMIN -0.075 -0.637 1.000 0.192  -0.046
DEFL -0.992 -0.683 0.192 1.000 0.014
DUMQ3 -0.032 0.007 -0.046 0.014  1.000

The Ljung-Box Q Test on the residuds reveals that this model sufficiently accounts for most of the variation in ATGR. However,
lags 1, 3, and particularly 5 are weak. This model could use some fine tuning.

Autocorrelaion Check of Residuds

To Chi Autocorrelations
Lag Square DF Prob
6 1026 6 0.114 0.010 0.190-0.023 0.137 -0.304 -0.132
12 19.40 12 0.079-0.190-0.173-0.075-0.185 -0.068 -0.152
The ACF check of the residuas indicate that there may be some information to be accounted for by amore complex model. Fine-
tuning is beyond the scope of thisarticle.
We begin checking for model adequacy.

proc ari ma data=l yxx;

i dentify var=atgr crosscorr=(wscons wsnm n dumg3 defl) noprint;
est input=(1 wscons 1 wsmin dung3 defl) plot;

run;

Thereisaproblem caused by an unspecified moving average on the error term. The inverse autocorrelaions
are dl| positive and do not decay quickly enough.
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And worse, the PACF does not cut off or decay exponentidly. Furthermore, it is negative most of thetime. The PACF
demongtrates some inadequacy in thismodd. Adding an MA term to the model might produce improvement; however, such fine-

tuning is beyond the scope of this paper.
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Comparison of CDR Explanatory Mode and theBJ ARIMA

The measures of goodness of fit look promising, producing roughly a 13% improvement for the SBC and a 25% improvement for
the Std Error Estimate over the univariate ARIMA.

CDR BJARIMA
Variance Edimate =0.00033352 0.00061
Std Error Estimate =0.01826247 0.02478 CDR shows a 25% improvement!
AIC = -279.47 -246.7
SBC = -269.44 -238.7 CDR shows a 13% improvement!
with Number of Resduds = 55

BACK-CAST for Univariate BJ ARIMA

Obs Forecast Std Error Lower 95% Upper 95% Actual Residual
53 22.6693 0.0248 22.6207 22.7179 22.6633 -0.0060
54 22.6703 0.0281 22.6152 22.7255 22.6749 0.0045
55 22.7106 0.0337 22.6445 22_7767 22.7215 0.0109
56 22.7064 0.0374 22.6331 22_7797 22.7112 0.0048

Back-Casts for CDR Model 80: The Std Error shows a 34% improvement over the BJ
ARIMA!

Obs Forecast Std Error Lower 95% Upper 95% Actual Residual
53 22.6562 0.0183 22.6204 22.6920 22.6633 0.0071
54 22.6581 0.0183 22.6223 22.6939 22.6749 0.0168
55 22.7205 0.0183 22.6847 22.7563 22.7215 0.0010
56 22.6992 0.0183 22.6634 22.7350 22.7112 0.0120

In general, the CDR mode! back fits the last four quarters aswell asthe BJARIMA. The CDR candidate shows tremendous
improvement in the confidence interval. However, the venerable BJARIMA actudly performswell. In three out of four within
sample forecadts, the BJ ARIMA had smaller residuas than the CDR model. In practice, with leads over onetime period (one
quarter-year), the CDR has proven far more reliable because it relies on dependabl e forecasts on the exogenous, explanatory
varigbles. Whileit is beyond the scope of this paper, which concerns combinatorics, the BJARIMA with the EGARCH in PROC
AUTOREG could further improve this modd.

In practice, the ARIMA s effective only for extremely short term forecasts. In our example, the ARIMA model usesan arl and
an ar2 term. Hence, for forecasts projected ahead more than two quarters, the autoregressive terms will be applied to its own
prior projections. The quality of the ARIMA mode predictions decay rapidly. Hence, for forecasts beyond two quarters, the
Dynamic Regresson model will produce superior results.
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Example 1: An Implementation of a Full Dynamic Regresson Model with MA Terms

Congtraints:

the AR term canrangefrom0to 5

the MA term can range from 0to 5

two Wage and Saary explanatory variables per model

each explanatory Wage and Saary variable can have lags from 0 to 3 time periods

Symbol Table for the Combinatoric-Generating DATA Step:

wV represents possible Wage and Sdary explanaory variables

sym represents possible lags

p isthe order of the autoregressive term on past vaues of ATGR

g isthe order of the moving average on the past errorsin estimation

data nod(keep=est);
array vv[7] $8.

("gdpdef","wsm n", "ogval ", "wscons", "wstcu", "wsfire","wsserv");
array synf 4] $5. (" ", "1", "2", "3");
retain nodel no O;
do vil=1 to 7; /* select the first wage and sal ary explanatory
vari abl e */
do v2=(vi1l+l) to 7; /* select the second uni que wage and sal ary
expl anatory variable */
do sl1=1 to 4; /* select a lag for the first explanatory
vari abl e */
do s2=1 to 4; /* select a lag for the second expl anatory
vari abl e */
do p=0 to 5; /* select the order of the AR term

*/
do g=0 to 5; /* select the order of the MA term

*/
nodel no=nodel no+1; /* assign a nodel identification nunber

*/

est=conmpress("md" || nodelno)||" : " || "estimate " || " p="|
conpress(p) || " g=" || conpress(q) || " " ||
" input=(" || compress(syn{si]) || " " || compress(vv[vl]) [| " " []
conpress(syn{s2]) || " " || conpress(vv[v2]) [[| ");";
out put ;

end; end; end; end; end; end;

run;



Here are three samples generated by this DATA step:

Sanple 1:
1 nodl: estimate p=0 g=0 i nput =(gdpdef wsmi n);
2 nod2: estimate p=0 g=1 i nput =(gdpdef wsmi n);
3 nod3: estimate p=0 =2 i nput =(gdpdef wsmi n);
4 nod4: estimate p=1 =0 i nput =(gdpdef wsmi n);
5 nod5: estimate p=1 g=1 i nput =(gdpdef wsmi n);
6 nod6: estimate p=1 =2 i nput =(gdpdef wsmi n);
7 nod7: estimate p=2 =0 i nput =(gdpdef wsmi n);
8 nod8: estimate p=2 g=1 i nput =(gdpdef wsmi n);
9 nod9: estimte p=2 =2 i nput =(gdpdef wsmi n);
Sanpl e 2:
55 nod55: estimate p=0 =0 i nput =(1gdpdef 2 wsnin);
56 nod56: estimate p=0 =1 i nput =(1gdpdef 2 wsnin);
57 nod57: estimate p=0 =2 i nput =(1gdpdef 2 wsnin);
58 nod58: estimate p=1 =0 i nput =(1gdpdef 2 wsnin);
59 nod59: estimate p=1 =1 i nput =(1gdpdef 2 wsnin);
60 nod60: estimate p=1 =2 i nput =(1gdpdef 2 wsnin);
61 nod61l: estimate p=2 =0 i nput =(1gdpdef 2 wsnin);
62 nod62: estimate p=2 =1 i nput =(1gdpdef 2 wsnin);
63 nod63: estimate p=2 q=2 i nput =(1gdpdef 2 wsnin);
Sanpl e 3:
3006 nmod3006: estimte p=2 =2 i nput=(3 wsfire 1 wstcu);
3007 nmod3007: estimate p=0 =0 i nput=(3 wsfire 2 wstcu);
3008 nmod3008: estimate p=0 g=1 i nput=(3 wsfire 2 wstcu);
3009 nmod3009: estimte p=0 =2 i nput=(3 wsfire 2 wstcu);
3010 nmod3010: estimate p=1 =0 i nput=(3 wsfire 2 wstcu);
3011 nmod3011: estimate p=1 g=1 i nput=(3 wsfire 2 wstcu);
3012 nmod3012: estimte p=1 =2 i nput=(3 wsfire 2 wstcu);
3013 nmod3013: estimte p=2 =0 i nput=(3 wsfire 2 wstcu);

* Warning: Some of the generated models use the MA term g > 0. However, some of these models may not be
cointegrated.

Example 22 Modeswith AR Denominator Factors

Definition of a Fird Order AR Denominator in atrangfer functiorr A single parameter applied to each selected explanatory
variable that “estimates the effect of an infinite distributed lag with exponentialy declining weights’ (SASETS User’s Guide, page
123).

Condraints:

each model must have 2 explanatory varigbles

the numerator (lag) must rangefrom Oto 3;

the denominator factor ( ddta(B) ) must = 1 (if used)
the MA term must range from 0 to 2

the AR term must range from O to 2



Symbol Table:

Please refer to the Symbol Tablein Example One.

data nod(keep=est);
array vv[5] $8. ("gdpdef","ogval","wscons", "WSRETL", "wsserv");

array syn{ 4] $5. (" ", "a", "2", "3","1/(L1)", "2/(1)", "3/ (L1)");

do vil=1 to 5; /* select first explanatory variable
*/

do v2=(v1l+l) to 5; /* sel ect non-duplicate second explanatory

variable */

do sl1=1 to 4; /* select lag on first explanatory variable
*/

do s2=1 to 4; /* select lag on second expl anatory

vari abl e */

do p=0 to 2; /* select order of ar term
*/

do g=0 to 2; /* select order of nmoving average, ma, term
*/

est="estimate " || " p="||conpress(p) || " g=" || compress(q)||" " || "

i nput=(" || conpress(syn{sl])|| conpress(vv[vl]) [[|" " || conpress(synis2])

|| compress(vv[v2]) [| ") method=m maxit=200; ";

out put ;

end; end; end; end; end; end;
}um
proc print data=nmod; run;

Sanpl e OQutput fromdata step with the AR Denom nator Term incl uded
0000 000 000 000

1197 estimate p=2 =2 input=(1/(1) wscons wsserv) nmethod=m nmaxit=200;

1198 estimate p=0 gq= input=(1/(1) wscons 1/(1) wsserv) nethod=m nmaxit=200;
1199 estimate p=0 =1 input=(1/(1) wscons 1/(1) wsserv) nethod=m  maxit=200;
1200 estimate p=0 =2 input=(1/(1) wscons 1/(1) wsserv) nethod=m maxit=200;
1201 estimate p=1 =0 i nput=(1/(1) wscons 1/(1) wsserv) nethod=m  nmaxit=200;
1202 estimate p=1 =1 input=(1/(1) wscons 1/(1) wsserv) nethod=m  maxit=200;
1203 estimate p=1 =2 input=(1/(1) wscons 1/(1) wsserv) nethod=m maxit=200;
1204 estimate p=2 =0 i nput=(1/(1) wscons 1/(1) wsserv) nethod=m maxit=200;
1205 estimate p=2 =1 input=(1/(1) wscons 1/(1) wsserv) nethod=m maxit=200;
1206 estimate p=2 =2 input=(1/(1) wscons 1/(1) wsserv) nethod=m maxit=200;
0000 000 000 000

* Warning: Some of the generated models use the MA term g > 0. However, some of these models may not be
cointegrated.



Conclusions

Combinatoric dynamic regression is an easily implemented tool that can help the researcher find and assess dl possible ARIMA
models. The method demonstrated is aflexible tool for knowledge discovery. The researcher may find improved models. By
using CDR, the researcher can rest assured that he has exhausted al possibilities. If improved models are not found, the
researcher knows that existing models outperform any other possible models. Effectively automating the process of finding models
frees the researcher to spend more time and resources on the evaluation and fine-tuning of the models found. Combinatorics may
prove useful when applied to other modeling paradigms, particularly PROC MODEL and PDL.
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