
1

Automate the Creation and Manipulation of Word
Processor Ready SAS® Output
Izabella Peszek and Robert Peszek

 Izabella Peszek works as a senior biometrician at Merck and Co. Previously, Iza worked as a senior
statistician for Ohmeda, Inc. A SAS user for nine years, her interests include statistical programming,
graphical presentation of clinical data, and automation of the report writing. Iza holds a Ph.D. in statistics
from the University of Maryland and an M.S. in applied mathematics from the University of Wroclaw,
Poland.

 Robert Peszek works as a lead analyst at Quality Software Systems Inc. His current areas of expertise and
interests are design of software systems and SAS, Java, and PowerBuilder programming. He has a Ph.D. in
applied mathematics from the University of Maryland and is a certified developer in Java and PowerBuilder.
Robert has been using SAS software for five years. Robert and Iza have been married for 12 years.

Abstract
 This paper presents an automated approach to the production and manipulation of word processor ready
tables using a combination of SAS and WordBasic macros. The presented SAS macro creates Rich Text
Format (RTF) files in a DATA _NULL_ step. Such files can be opened in any word processor equipped
with an RTF converter. Manipulation of SAS generated tables and graphs using WordBasic macros is
discussed. The use of such techniques eliminates the need for manual word processing of SAS outputs,
resulting in cost and resource savings and in improving the quality and accuracy of reports.

Contents
• Introduction
• Creating RTF files in SAS Software
• Automating Manipulation of SAS Outputs
• Developing Other Solutions with Microsoft Office
• Acknowledgements
• References
• Appendix A - Macro %RTF Code and Specifications
• Appendix B - About the Word Macro InsertAllFiles
• Appendix C - Macro InsertAllFiles for Word 97

• Appendix C.1 - Macro Code
• Appendix C.2 - Template Text

• Appendix D - Macro InsertAllFiles for Word 6.0/95
• Appendix D.1 - Macro Code
• Appendix D.2 - Template Text

Introduction
 There was a time when SAS programmers did not need to worry too much about the formatting of their
outputs. Reports were produced with courier font and everybody was happy. Today, the customers are much
more demanding and want SAS outputs to be not only accurate and interesting but also eye-pleasing. In
many cases, tabulations and graphics produced with SAS software are word processed to become a part of a
bigger document. As you read this, someone is probably re-entering numbers from a SAS produced table to
create a more appealing one. In many companies, a whole staff of secretaries and proofreaders are
employed for just this purpose. This is costly and creates an opportunity for keying errors.

2

 For that reason, people are trying to come up with innovative ways of transforming SAS generated tables
into great looking documents with minimal word processing. Microsoft Office, Perfect Office, and Lotus
Smart Suite became industry standards for document processing, and it seems natural to use them for this
purpose. This can be done in many ways. Seidman and Aster proposed using Microsoft Word templates and
WordBasic macros. Their idea was to produce a very simple DATA _NULL_ ASCII output, which can be
read into an MS Word template. Special characters are inserted in DATA _NULL_ to mark places where
different formatting is to be applied via MS Word macros. Another approach is to use the ODBC interface
to read a SAS table into a Microsoft Access database and link this MS Access table to MS Word. We tried
these methods and found them useful, yet both methods have some drawbacks. First of all, a considerable
programming effort is required for each new table, which makes automation problematic. Second, these
methods are not easily implemented by an average SAS programmer because some proficiency is required
in VisualBasic, WordBasic, and MS Access programming. There are also some concerns about the system
stability because the full automation would require flipping control between SAS and other applications.

 We propose here yet another approach, which is versatile and easy to implement. Our method is to use a
SAS DATA _NULL_ step to produce a document with Rich Text Format (RTF) specification. The RTF
specification is a method of encoding formatted text and graphics for easy transfer between applications. An
RTF file consists of unformatted text, control words, control symbols, and groups (readers familiar with
LaTeX or TeX will find many similarities between them and the RTF). Most word processors can convert
RTF files into their native format, which makes RTF files platform- and application-portable. That is, the
same output can be opened in MS Word, WordPerfect, or other word processor equipped with an RTF
converter (even on different operating system) with no loss of formatting. Of course, not all SAS
programmers are familiar with the RTF language, and we wanted a method that can be widely useful, so we
developed a SAS macro to assist us in creation of RTF files. You need only to learn the syntax of this macro
to be able to write RTF files. This macro is used within a DATA _NULL_ step in a way very similar to the
regular PUT statement, and it is quite easy to learn. The unformatted text is inserted with a PUT statement,
while macro variables provide appropriate control words and symbols. Moreover, users familiar with RTF
language can easily expand the macro to suit their needs.

 We describe the usage of this macro in a simple example in “Creating RTF files in SAS Software”.
Appendix A lists the code of the macro and a detailed technical description. During extensive user testing at
Merck Research Labs, this macro went through a series of improvements. Several SAS programmers with
different levels of SAS skills used it and proposed changes and enhancements. Its present shape reflects
their experience.

 When we started mass production of MS Word ready SAS outputs (tables and graphs), we learned one
lesson: a large number of outputs is difficult to manage manually! If you want to insert 100 tables (some of
them in portrait, others in landscape) and 50 graphs into one document, or if you simply want to print them,
be prepared for a long and tedious task! Thus, the next natural step for us was to automate this common file
manipulation. Again, we tried a couple of methods and decided that using MS Word macro capabilities was
the most feasible. MS Word macros can be extremely useful to a SAS programmer. They can range from
very simple to very complicated. A few lines of code can accomplish simple tasks, such as printing all files
in a certain directory with one mouse click or automatic formatting of standard SAS outputs upon opening
in MS Word. The latter operation could amount to applying courier font when *.lis file is opened, or you
can get more fancy and try to automatically determine (and set) an appropriate font size and page
orientation. Once you start thinking along these lines, you will probably find many ways to cut down on
manual labor and make your work more efficient using macro tricks. Some ideas that worked for us are
presented in later sections. They include automation of the file inserting and file comparison processes.

3

Creating RTF files in SAS Software
 The following example illustrates the concept behind RTF programming in SAS software. We start with a
simple table produced in a traditional way using a PUT statement.

 Example 1

 /* Create a simple data set to use with the table */
 data test;
 input name trt n mean std median ;
 cards;
 1 1 69 32.8841 12.5047 31
 1 2 67 34.6119 13.7631 33
 1 3 136 33.7353 13.1195 31
 2 1 69 67.2464 4.0959 66
 2 2 67 67.2090 3.7961 67
 2 3 136 67.2279 3.9365 66
 ;

 proc sort; by name trt;

 proc format;
 value namefmt 1 = ’Age (years)’
 2 = ’Height (in)’;
 value trtfmt 1 = ’Control ’
 2 = ’Experimental Test Drug’
 3 = ’All ’;

 %let title1 = Simple Summary Statistics;

 data _null_;
 file ’u:\test.txt’;
 set test end=eof ;
 by name trt;

 titel1 = "&title1";
 line1 = repeat("_", 80);
 /* center titles on the page */
 t1 = (90 - length(titel1))/2;
 /*define starting location for each column */
 c1 = 1;
 c2 = 17;
 c3 = 43;
 c4 = 51;
 c5 = 70;

 if _n_=1 then do;
 put @t1 titel1;
 put / @c1 line1;
 put / @c1 'Variable' @c2 'Treatment' @c3+2 'N' @c4+2 'Mean ± SD'
 @c5 'Median';
 put / @c1 line1;
 end;

 if last.name then put ;
 if first.name then put @c1 name namefmt. @;
 put @c2 trt trtfmt.
 @c3 N 3.
 @c4 mean 5.2 + 1 '±' +1 std 5.2
 @c5 median 5. ;
 if last.name then put @c1 line1;
 run;

4

Figure 1 shows the table produced by this code. To preserve a proper alignment of the columns, when
inserting in a MS Word document, the font used for this table has to be fixed size, for example, courier.

Figure 1

 Simple Summary Statistics

Variable Treatment N Mean ± SD Median

Age (years) Control 69 32.88 ± 12.50 31
 Experimental Test Drug 67 34.61 ± 13.76 33

 All 136 33.74 ± 13.12 31

Height (in) Control 69 67.25 ± 4.10 66
 Experimental Test Drug 67 67.21 ± 3.80 67

 All 136 67.23 ± 3.94 66

 We will now demonstrate how such a table can be produced using the macro %RTF. Although the code
looks much more complicated, using this macro allows for a great flexibility in table formatting (as we
discuss later).

 /* We assume that macro rtf has been compiled. */

0001 data _null_;
0002 file 'c:\test.rtf';
0003 set test end=eof ;
0004 by name trt;
0005
0006 if _n_=1 then do;
0007 %rtf(0); * initialize table;
0008 %rtf(1, b=0); * define a row with 1 column, no borders;
0009 put &bc "&title1" &e;
0010 ∥ * insert empty line;
0011 %rtf(5, 2 3 1 2 1, b=1, h=a, v=a, s=120 120);
0012 * define a row with 5 columns, with borders (vertical and
0013 horizontal);
0014 put &bc 'Variable' &cc 'Treatment' &cc 'N' &cc 'Mean ± SD'
0015 &cc 'Median' &e;
0016 end;
0017
0018 if first.name then do;
0019 %rtf(5, 2 3 1 2 1, b=1, v=a); * horizontal border turned off;
0020 end;
0021
0022 if last.name then do;
0023 %rtf(5, 2 3 1 2 1, b=1, v=a);
0024 put &nl;
0025 %rtf(5, 2 3 1 2 1, b=1, v=a, h=a); * horizontal border turned on;
0026 end;
0027
0028 if first.name then put &bl name namefmt. @;
0029 else put &bl @;
0030
0031 put &cl trt trtfmt.
0032 &cc N 3.
0033 &cc mean 5.2 +1 '±' +1 std 5.2
0034 &cc median 5. &e;
0035
0036 if eof then do;
0037 %rtf(100); * close table;
0038 end;
0039 run;

5

 Figure 2 shows that the output from this program, when opened in an ASCII editor, looks formidable.

Figure 2: The RTF File Code

 {\rtf1\ansi \deff0\deflang1033{\fonttbl{\f0\froman Times New Roman;}
 {\f1\froman\fcharset2\fprq2 Symbol;}}
 \trowd\trgaph108\trleft0\trqc
 \cellx9000\pard
 \pard
 \intbl\qc\sb30\sa30 Table 2\cell\intbl\row\pard
 \intbl\qc\sb30\sa30 Simple Summary Statistics\cell\intbl\row\pard
 \pard\par
 \trowd\trgaph108\trleft0\trqc
 \trbrdrt\brdrs\brdrw15\trbrdrl\brdrs\brdrw15
 \trbrdrb\brdrs\brdrw15\trbrdrr\brdrs\brdrw15
 \clbrdrb\brdrhair\clbrdrr\brdrhair\cellx2000\clbrdrb\brdrhair\clbrdrr
 \brdrhair\cellx5000\clbrdrb\brdrhair\clbrdrr\brdrhair\cellx6000\clbrdrb
 \brdrhair\clbrdrr\brdrhair\cellx8000\clbrdrb\brdrhair\clbrdrr\brdrhair\cellx9000\pard
 \intbl\qc\sb120\sa120 Variable\cell\pard\intbl\qc\sb120\sa120 Treatment
 \cell\pard\intbl\qc\sb120\sa120 N\cell\pard\intbl\qc\sb120\sa120 Mean ± SD
 \cell\pard\intbl\qc\sb120\sa120 Median\cell\intbl\row\pard
 \trowd\trgaph108\trleft0\trqc
 \trbrdrt\brdrs\brdrw15\trbrdrl\brdrs\brdrw15
 \trbrdrb\brdrs\brdrw15\trbrdrr\brdrs\brdrw15
 \clbrdrr\brdrhair\cellx2000\clbrdrr\brdrhair\cellx5000\clbrdrr\brdrhair\cellx6000
 \clbrdrr\brdrhair\cellx8000\clbrdrr\brdrhair\cellx9000\pard
 \intbl\ql\sb30\sa30 Age (years)\cell\pard\intbl\ql\sb30\sa30 Control
 \cell\pard\intbl\qc\sb30\sa30 69\cell\pard\intbl\qc\sb30\sa30 32.88 ± 12.50
 \cell\pard\intbl\qc\sb30\sa30 31\cell\intbl\row\pard
 \intbl\ql\sb30\sa30 \cell\pard\intbl\ql\sb30\sa30 Experimental Test Drug\cell
 \pard\intbl\qc\sb30\sa30 67\cell\pard\intbl\qc\sb30\sa30 34.61 ± 13.76\cell
 \pard\intbl\qc\sb30\sa30 33\cell\intbl\row\pard
 \trowd\trgaph108\trleft0\trqc
 \trbrdrt\brdrs\brdrw15\trbrdrl\brdrs\brdrw15
 \trbrdrb\brdrs\brdrw15\trbrdrr\brdrs\brdrw15
 \clbrdrr\brdrhair\cellx2000\clbrdrr\brdrhair\cellx5000\clbrdrr\brdrhair\cellx6000
 \clbrdrr\brdrhair\cellx8000\clbrdrr\brdrhair\cellx9000\pard
 \intbl\ql\sb30\sa30 \cell\pard\intbl\qc\sb30\sa30 \cell\pard\intbl\qc\sb30\sa30
 \cell\pard\intbl\qc\sb30\sa30 \cell\pard\intbl\qc\sb30\sa30 \cell\intbl\row\pard
 \trowd\trgaph108\trleft0\trqc
 \trbrdrt\brdrs\brdrw15\trbrdrl\brdrs\brdrw15
 \trbrdrb\brdrs\brdrw15\trbrdrr\brdrs\brdrw15
 \clbrdrb\brdrhair\clbrdrr\brdrhair\cellx2000\clbrdrb\brdrhair\clbrdrr\brdrhair
 \cellx5000\clbrdrb\brdrhair\clbrdrr\brdrhair\cellx6000\clbrdrb\brdrhair\clbrdrr
 \brdrhair\cellx8000\clbrdrb\brdrhair\clbrdrr\brdrhair\cellx9000\pard
 \intbl\ql\sb30\sa30 \cell\pard\intbl\ql\sb30\sa30 All
 \cell\pard\intbl\qc\sb30\sa30 136\cell\pard\intbl\qc\sb30\sa30 33.74 ± 13.12
 \cell\pard\intbl\qc\sb30\sa30 31\cell\intbl\row\pard
 \trowd\trgaph108\trleft0\trqc
 \trbrdrt\brdrs\brdrw15\trbrdrl\brdrs\brdrw15
 \trbrdrb\brdrs\brdrw15\trbrdrr\brdrs\brdrw15
 \clbrdrr\brdrhair\cellx2000\clbrdrr\brdrhair\cellx5000\clbrdrr\brdrhair\cellx6000
 \clbrdrr\brdrhair\cellx8000\clbrdrr\brdrhair\cellx9000\pard
 \intbl\ql\sb30\sa30 Height (in)\cell\pard\intbl\ql\sb30\sa30 Control
 \cell\pard\intbl\qc\sb30\sa30 69\cell\pard\intbl\qc\sb30\sa30 67.25 ± 4.10\cell

6

 \pard\intbl\qc\sb30\sa30 66\cell\intbl\row\pard
 \intbl\ql\sb30\sa30 \cell\pard\intbl\ql\sb30\sa30 Experimental Test Drug\cell\pard
 \intbl\qc\sb30\sa30 67\cell\pard\intbl\qc\sb30\sa30 67.21 ± 3.80\cell\pard\intbl
 \qc\sb30\sa30 67\cell\intbl\row\pard
 \trowd\trgaph108\trleft0\trqc
 \trbrdrt\brdrs\brdrw15\trbrdrl\brdrs\brdrw15
 \trbrdrb\brdrs\brdrw15\trbrdrr\brdrs\brdrw15
 \clbrdrr\brdrhair\cellx2000\clbrdrr\brdrhair\cellx5000\clbrdrr\brdrhair\cellx6000
 \clbrdrr\brdrhair\cellx8000\clbrdrr\brdrhair\cellx9000\pard
 \intbl\ql\sb30\sa30 \cell\pard\intbl\qc\sb30\sa30 \cell\pard\intbl\qc\sb30\sa30
 \cell\pard\intbl\qc\sb30\sa30 \cell\pard\intbl\qc\sb30\sa30 \cell\intbl\row\pard
 \trowd\trgaph108\trleft0\trqc
 \trbrdrt\brdrs\brdrw15\trbrdrl\brdrs\brdrw15
 \trbrdrb\brdrs\brdrw15\trbrdrr\brdrs\brdrw15
 \clbrdrb\brdrhair\clbrdrr\brdrhair\cellx2000\clbrdrb\brdrhair\clbrdrr\brdrhair\cellx5000
 \clbrdrb\brdrhair\clbrdrr\brdrhair\cellx6000\clbrdrb\brdrhair\clbrdrr\brdrhair\cellx8000
 \clbrdrb\brdrhair\clbrdrr\brdrhair\cellx9000\pard
 \intbl\ql\sb30\sa30 \cell\pard\intbl\ql\sb30\sa30 All
 \cell\pard\intbl\qc\sb30\sa30 136\cell\pard\intbl\qc\sb30\sa30 67.23 ± 3.94
 \cell\pard\intbl\qc\sb30\sa30 66\cell\intbl\row\pard
 \pard\par }

 The same output opened in MS Word is shown in Figure 3.

Figure 3

Simple Summary Statistics

Variable Treatment N Mean ± SD Median

Age (years) Control 69 32.88 ± 12.50 31

Experimental Test Drug 67 34.61 ± 13.76 33

All 136 33.74 ± 13.12 31

Height (in) Control 69 67.25 ± 4.10 66

Experimental Test Drug 67 67.21 ± 3.80 67

All 136 67.23 ± 3.94 66

 We will shortly explain the meaning of the macro variables in the above program. Detailed technical
specifications for macro %RTF are in Appendix A. The syntax is very similar to the regular PUT statement,
but there are, however, some important differences and rules that must be followed. Each table starts with
the table declaration (or initialization) that has the form %RTF(0) (see line 0007). After that, each row is
written line-by-line and the format of each row has to be defined. The first positional parameter defines how
many columns the row will contain. In line 0008, we define a row with just one column. This column will
be centered on the page. If the row has two or more columns, we need to specify the relative widths of the
columns. For example, in line 0011, we defined a row of five columns with relative widths 2,3,1,2, and 1.
That means that the whole width of the page (minus margins, which are set by default to 1.25” on both
sides) is divided proportionally among five columns as follows. The first column is twice as wide as the
third one, the second column is three times as wide as the third one, and so on.

7

 The parameter B defines outer borders. We set B=0 if we want a row with no borders (for example, title
row) and B=1 if outer borders are desired. The parameters V and H specify inner borders. If H=A, as in line
0011, then the row will have a horizontal border at the bottom of each cell; we could set H=1 3 to get a
horizontal border at the bottom of the first and the third cell. The vertical borders are defined similarly. The
default line style for the borders is single. Appendix A shows how to specify a double-line border. We could
also request borders at the top of the cells.

 There is one additional parameter, S, in line 0011. This parameter takes two integers and specifies how
much space we want between the text and the top (first integer) and bottom (second integer) of the cell. In
most cases, default spacing works just fine. For aesthetic reasons, we decided to space table headers wider
than the body of the table.

 The row definition stays in effect for each line of output until macro %RTF is invoked again. In our
example, we wanted to separate the header from the table and Age from Height using horizontal borders.
For that reason, we invoke macro %RTF when first.name condition is true (to turn bottom borders off using
a default value H=0 in line 0019) and again when the last.name condition is true (to turn bottom borders on
using H=A in line 0025).

 After we defined the row appearance, we place data in the cells using a familiar PUT statement. A very
important difference from the regular PUT statement is that we use the macro variables &BL , &BC, &BR ,
&CL , &CC, and &CR at the beginning of each cell. The variables &BL, &BC, and &BR are used only for
the first cell in the row; the variables &CL, &CC, and &CR are used for the remaining cells (if there are
more than one). These variables, besides initializing the cell, define the justification of a text within a cell.
The variables &BL, &BC, and &BR request left-justified, centered, and right-justified placement,
respectively. The variables &CL, &CC, and &CR are defined similarly. In our example, the text is left-
justified in the first two columns (lines 28-31) and centered in the remaining ones (lines 32-34). Sometimes
you may prefer a decimal alignment to improve on the appearance of the numbers. The variables &DL1,
&DL2, and so on, discussed in the Appendix, serve this purpose. The &B* or &C* variables, as
appropriate, must be used for every cell in a row. If the number of &B*/&C* variables does not match the
current number of columns, an error occurs and MS Word crashes upon opening of the document. In line
0029, we demonstrate how to an create empty cell without violating this requirement. Another important
feature is that every row ends with a keyword &E.

 The variable &PAR inserts a paragraph mark (line break). We used it in line 0010 to separate the borderless
row with the title from the table proper. The variable &NL in line 0024 creates a row with all cells empty.
An alternative way to create such a row would be

 put &bc &bl &bl &bl &bl &e;

 The final point is that we use a mandatory %RTF(100) statement at the end of our table (after writing the
last line).

 We describe here the most basic features of the RTF programming in SAS. There are many more options
available. For example, you may use exotic symbols, format text as italic, bold or underline, subscript or
superscript, or vary font size. The wrapping of text within a cell happens automatically — you will never
have to worry about overflowing long character variables! The pages can have portrait or landscape
orientation and the orientation can vary within the same output.

 It should be pointed out that users can easily expand our macro to suit their needs. For example, we defined
only two basic fonts (times new roman and symbol) because these are the only fonts that we use for our
outputs. More fonts can be added easily to accommodate different needs. Users familiar with the RTF
language can also use a PUT statement with direct RTF statements (for example, RTF keywords \b and \b0
turn bold formatting on and off).

8

 Please note that it is not recommended to edit RTF files inside MS Word. This is because MS Word
encodes an RTF file in a way different from our macro, and unexpected results may occur when you save
your changes. Before you attempt editing, you should save an RTF document as an MS Word document.

 The only noticeable drawback of RTF programming within SAS Software is that some errors in the RTF
file may cause MS Word to crash, and repeated crashes of MS Word in the same session may eventually
crash the system. It is almost impossible for beginners to avoid making errors while writing RTF files, so
save your work before opening a newly created RTF output! The admiration in the eyes of customers, when
they see your impressive outputs, is well worth these growing pains.

Automating Manipulation of SAS Outputs
 When complex reports are generated, a great number of SAS outputs (graphs, tables, listings, analysis
outputs, and so on) needs to be word processed. This is usually a tedious task, especially if a final document
consists of different types of SAS outputs. We created a MS Word macro InsertAllFiles that greatly reduces
manual effort required to insert multiple files into one document. This macro was created to work with
Word documents, *.RTF files, and graphics generated in CGM format. However, it can be easily modified
to work with any other types of documents. The installation instructions for this macro are given in
Appendix B.

 The basic idea is to create a list of files to be manipulated and to insert files from this list into a new
MS Word document. The list is created by point-and-click in the displayed dialog box (see Figure 4).
Before the file is inserted, its orientation is determined. If necessary, a section break is created in the new
document and orientation of the new section is set to match the orientation of the currently processed file.
Graphs (that is, *.CGM files) are inserted as pictures in an orientation of the user’s choice. All this is
handled automatically.

 Figure 4 presents the dialog box that is displayed by the InsertAllFiles macro. Objects on the left side let us
display files in a specific directory (in an alphabetical order) and are used in a way similar to Windows’ File
Manager. Combo-box File Filter is used to filter file extensions. The list is created and displayed in a box
on the right side using push-buttons Add All, Add, Up, Down, Remove, Remove All; These buttons also let
us rearrange the order of the items on the list. If the alphabetical order of the files matches the order desired
in the document, we could create a list with a single click on the button Add All.

 The remaining buttons and boxes are used for advanced options. The user may request that a header with a
full path and filename is inserted before the file itself. Files can be also inserted as LINKS (readers not
familiar with this useful feature are referred to Microsoft Word Help). This comes in handy if the same set
of programs generating outputs is run more than once. A master file with all the reports needs to be created
only once; when the next set of reports is generated, one needs only to update links in the master document
to replace the outputs with the new ones. Note that if the LINKS box is checked, graphs are inserted into
document as links with an option that will save a copy in the document. This is done so that the graphs do
not disappear when the link is broken.

9

Figure 4: A Snapshot of the InsertAllFiles Dialog Window

One of the limitations of the MS Word graphic editor is that it corrupts *.CGM pictures containing rotated
text. For that reason, it is sometimes convenient to store titles of the graphs produced in SAS in a separate
document to allow for their editing (we usually employ the macro %RTF to generate an RTF file with the
graph title in the same program as the graph itself). It is convenient to store the graph and its title in the files
with the same name but with different extensions, for example, GRAPH1.CGM and GRAPH1.TTl. If the
user specifies the extension of files containing graph titles in a combo-box, macro InsertAllFiles recognizes
the files with graph titles and does not create page breaks after these files, so that graph and its title are on
the same page. The Switch Order of Graphs and Titles push button automatically rearranges the list so that
graph titles precede graphs (*.CGM precedes *.TTl when listed alphabetically). This button switches the
order of neighboring files if

1. both files have the same name
2. the extension of the first file matches the extension specified in the box
3. the extension of the second file is CGM.

 Once MS Word finishes inserting files from the list, the control is returned to MS Word. At this point, the
document can be saved, printed, or edited.

 Using Save Settings and Restore Settings push buttons, the user can save the information about the order
and format of inserted documents in an external file. This way, it is possible to prepare the report ahead of
time and rerun it with one push of a button. The user can perform part of the work at one time, save settings
needed to reproduce the task, and continue work or modify these settings latter.

10

 It should be noted that in some operating environments memory limitations cause MS Word to lock if you
try to insert too many files. If this happens, the message “Error: File could not be found” appears. It is best
to limit the size of the list to 40–50 files. By experimenting, you will quickly learn how many files can be
safely processed at a time.

Developing Other Time Saving Solutions with Microsoft Office
 There are many ways in which SAS users can draw on the power of Microsoft Office. In this section we
present some ideas we found useful, leaving the programming details to the creativity of the reader.

 Sometimes users need to verify that a the new graph matches a graph generated in the past. The eye-balling
technique may not reveal all the subtle differences so some more sensitive methods of comparisons are
needed. While MS Word allows for relatively easy comparison of documents, it cannot handle the
comparison of graphic objects. There may be specialized graphic software that is capable of comparing
graphic objects, but it is not widely available. We use a simple trick in PowerPoint to accomplish this task.
The reason for using PowerPoint is that its graphic editor can recolor imported graphic objects. We insert
both the old and the new graphs in a blank PowerPoint slide (resizing them if necessary)) and recolor the
new one in red while the old one is left black. After we align the graphs, the top graph should cover the
bottom one, and we should see only one color if the graphs are identical. The next slide inverts the layer so
that the graph that was on the bottom is now on the top. If the two graphs are identical, then the first slide
will be monochromatic black and the second one will be monochromatic red. It is fairly easy to spot the
differences because they will appear as a two-colored slide.

 Of course, you could superimpose two sheets of paper and view them against a source of light to achieve
the same trick. However, we can use the described algorithm in a macro that can process a large number of
graphs and greatly simplify the work. Office 97 supports PowerPoint Basic, and such a macro program can
be implemented directly in PowerPoint. Older versions of PowerPoint do not support macros. Instead, we
can write a WordBasic macro and use a SendKeys command to perform tasks in PowerPoint. We find it
useful to employ two kinds of macros: the individual comparisons and the list comparisons. The first type
compares a graph selected in a MS Word document with the one stored in an external file. The second
macro creates the list that consists of the pairs (old graph/new graph) and performs the comparison on each
pair. If the list consists of n pairs, the macro will create a PowerPoint set of 2n slides (2 slides for each pair)
with superimposed pairs of graphs. This set of slides can be visually scanned for the two-colored graphs.

 In a similar way, the list of paired MS Word documents or RTF files can be processed and comparisons of
documents performed on each pair. In that case, the automation can be carried one step further because
WordBasic has the capability to recognize the identical documents, and it is possible to create a macro that
deletes from the list all the pairs that are identical and leaves only the pairs with files that differ.

 There are probably as many uses for the MS Word macros in conjunction with SAS programming as there
are SAS programmers. You can write a macro to search all the files on a disk for the occurrence of a
specified string. You can scan saved SAS logs for error messages and warnings. If you still work in
Windows for Workgroups, you may want to create a macro to list the total size of the specified directory.
We tried to describe here a few applications that saved us a great deal of manual labor. It should be noted
that these applications could be developed and improved with VisualBasic (or another application-building
tool), which offers more advanced capabilities. However, WordBasic seems to suffice in many situations
and is widely available to most PC users without having to invest in another software. Our hope is that we
will encourage fellow SAS programmers to try these techniques. The time you spend learning the necessary
tools would be well spent — it will save you months of boring work and your company thousands of
dollars.

11

Acknowledgments
The authors would like to thank Mr. Jianmin Long of Schering Plough, Inc., for developing the macro
%RTF during his tenure at Merck & Co., and all reviewers for helpful comments and suggestions.

References
Reporting from the Field: SAS Software Experts Present Real-World Report-Writing Applications,
 SAS Institute Inc., 1994

Microsoft, MS-DOS, Windows, OS/2, and Apple Macintosh Applications: Rich Text Format (RTF)
Specification, Product Support Services Application Note, 1994

Microsoft Word Developer’s Kit, Microsoft Press, 1995

Appendix A – Macro %RTF Code and Specifications
 %macro rtf(n, m, s=30 30, b=1, r=2, o=p, h=0, v=0, hline=b, line=s,
last=0, w=);
 %* author: Jianmin Long;
 %* Copyright Merck & Co., 1996;

 %if &n=0 %then %do;
 %* initialize rtf document;
 put "{\rtf1\ansi \deff0\deflang1033"@;
 %* define fonts;
 put "{\fonttbl{\f0\froman Times New Roman;}";
 put "{\f1\froman\fcharset2\fprq2 Symbol;}";
 put "{\f2\froman\fcharset2\fprq2 Arial;}" @;
 %* add other fonts using f3, f3 etc...;
 put "}";
 %* define page orientation;
 %if &o=l %then %do;
 put "\paperw15840\paperh12240\landscape ";
 %end;
 %* define shortcuts for cell formatting;
 %global e par newpage;
 %let e=’\cell\intbl\row\pard ’;
 %* define keyword for new page;
 %let newpage=%str(put ’\page \par \pard ’;);
 %* define keyword for line break;
 %let par=%str(put ’\pard\par ’;);
 %end;
 %* define closing for a table;
 %else %if &n > 31 %then %do;
 put "\pard\par }";
 %end;
 %else %do;
 %global dbline;
 %* define keyword for double line to use in table formatting;
 %let dbline=%str(put ’\sl-20 \slmult0 \par \pard ’;);
 %* break complex parameters r,v and h into "words";
 %do i=1 %to %length(&r);
 %if %length(%scan(&r, &i)) %then %do; %let num_of_r=&i; %end;
 %end;
 %do i=1 %to %length(&v);

12

 %if %length(%scan(&v, &i)) %then %do; %let num_of_v=&i; %end;
 %end;
 %do i=1 %to %length(&h);
 %if %length(%scan(&h, &i)) %then %do; %let num_of_h=&i; %end;
 %end;
 %* if all vertical borders are requested, calculate how many
columns
 in the table and define borders coding;
 %if &v=a %then %do;
 %do i=1 %to &n;
 %let vl&i=\clbrdrr\brdrhair; %end;
 %end;
 %* define vertical borders coding so only requested cell borders
show;
 %else %do;
 %do i=1 %to &n; %let vl&i= ; %end;
 %if &v ne 0 %then %do;
 %do i=1 %to &num_of_v;
 %let ii=%scan(&v, &i);
 %let vl&ii=\clbrdrr\brdrhair; %end;
 %end;
 %end;

 %* if this is last row in the table, make bottom border double
line;
 %if &last=1 %then %do;
 %do i=1 %to &n;
 %let hl&i=\clbrdr&hline\brdrdb; %end;
 %end;
 %* for other rows, define horizontal borders coding so only
requested cell borders show;
 %else %do;
 %if &h=a %then %do;
 %do i=1 %to &n;
 %let hl&i=\clbrdr&hline\brdrhair; %end;
 %end;
 %else %do;
 %do i=1 %to &n; %let hl&i= ; %end;
 %if &h ne 0 %then %do;
 %do i=1 %to &num_of_h;
 %let ii=%scan(&h, &i);
 %let hl&ii=\clbrdr&hline\brdrhair; %end;
 %end;
 %end;
 %end;

 %* define the width of the table in pixels ;
 %* default width is 9000 pixels for portrait and 12240 for
landscape;
 %if %length(&w)=0 %then %do;
 %if &o=p %then %do;
 %let tw=9000;
 %end;
 %else %if &o=l %then %do;
 %let tw=12240;
 %end;
 %end;
 %* for requested table width in inches, convert width to pixels;
 %else %do;
 %let tw=%eval(1440*&w/(10**(%length(&w) - 1));
 %end;

13

 %* determine if the position of all decimal alignments is the
same (r=1);
 %if &num_of_r = 1 %then %do;
 %* define the tag for the position of the decimal point ;
 %if &r > 32 %then %do;
 %* decimal point of 1st cell will be just left of the cell
middle;
 %let r1=%eval(32 - &r);
 %end;
 %else %do;
 %let r1=&r;
 %* decimal point of 1st cell will be at r/64 of cell
width;
 %end;
 %do i=2 %to &n; %let r&i=&r1; %end;
 %* decimal points for other cells fsame as 1st cell;
 %end;
 %else %do;
 %do i=1 %to &n;
 %let r&i=%scan(&r, &i); %* break parameter r into words;
 %if &&r&i > 32 %then %do;
 %* decimal point of ith cell will be just left of the cell
middle;
 %let r&i=%eval(32 - &&r&i); %end;
 %end;
 %end;
 %global nl bl br bc cl cr cc nc next;
 %* break complex parameter s into distance from top (sb) and from
bottom (sa);
 %let sb=%scan(&s, 1);
 %let sa=%scan(&s, 2);

 %* code tags for 1st cell in a row under left-, center-, and
right-justification;
 %let bl="\intbl\ql\sb&sb\sa&sa ";
 %let bc="\intbl\qc\sb&sb\sa&sa ";
 %let br="\intbl\qr\sb&sb\sa&sa ";
 %* code tags for other cells in a row under left-, center-, and
right-justification;
 %let cl="\cell\pard\intbl\ql\sb&sb\sa&sa ";
 %let cc="\cell\pard\intbl\qc\sb&sb\sa&sa ";
 %let cr="\cell\pard\intbl\qr\sb&sb\sa&sa ";

 %let next="\cell\pard";
 %let nc="\cell\pard";

 %if &n=1 %then %do;
 %global dl1;
 %let nl=%str("\intbl\cell\intbl\row\pard";);
 %end;
 %else %do;
 %do temp=1 %to &n;
 %global dl&temp;
 %end;
 %let nl=%str(’\intbl\cell’ @;);
 %do i=1 %to %eval(&n-1);
 %let nl=%str(&nl put ’\cell’ @;);
 %end;
 %let nl=%str(&nl put ’\intbl\row\pard’;);

14

 %end;
 put "\trowd\trgaph108\trleft0\trqc";
 %* code and print tags if outer borders of the table are
requested;
 %if &b = 1 %then %do;
 put "\trbrdrt\brdr&line\brdrw15\trbrdrl\brdrs\brdrw15";
 put "\trbrdrb\brdr&line\brdrw15\trbrdrr\brdrs\brdrw15"; %end;

 %if &n = 1 %then %do;
 %* code and print tags if the table has only one column;
 put "&hl1&vl1\cellx&tw\pard";
 %* code decimal alignment tags for the table with only one
column;
 %let dt1=%eval((32+(&r1))*&tw/64 - 108);
 %end;
 %else %do;
 %* code and print tags if the table has more than one column;
 %let t=0;
 %if %length(&m) %then %do;
 %do i=1 %to &n;
 %let dd&i=%scan(&m, &i);
 %let t=%eval(&t+&&dd&i);
 %let cw&i =&t; %end;
 %do i=1 %to &n;
 %let w&i=%eval(&&cw&i*&tw/&t);
 %let dt&i=%eval((32+(&&r&i))*&&dd&i*&tw/(64*&t) - 108);
 put "&&hl&i&&vl&i\cellx&&w&i" @; %end;
 %end;
 %else %do;
 %do i=1 %to &n;
 %let w&i=%eval(&i*&tw/&n);
 %let dt&i=%eval(&w1*(32+(&&r&i))/64 - 108);
 put "&&hl&i&&vl&i\cellx&&w&i" @; %end;
 %end;
 %end;
 put "\pard";
 %* code tags for decimal alignment;
 %let dl1="\intbl\sb&sb\sa&sa\tqdec\tx&dt1\tx%eval(&dt1+80)\tab ";
 %do i=2 %to &n;
 %let
dl&i="\cell\pard\intbl\sb&sb\sa&sa\tqdec\tx&&dt&i\tx%eval(&&dt&i+80)\
tab ";
 %end;
 %end;
 %mend rtf;

15

Figure 5: Explanation of the Macro Parameters of the %RTF Macro (default values in parentheses)

Parameter Type Description
N integer Number of columns in the table.

N=0 is used to initiate the table, N=100 is used to close the table.
M string of

integers
Relative width of columns. If used, the number of elements in the string M must
be equal to the macro parameter N. If m is not specified, all columns have
equal width. (optional)

S (=30 30) pair of
integers

Space (in twips) between the text and the top and the bottom of the cell,
respectively.

B (=1) 0 or 1 If B=0, table has no outer border. If B=1, table has an outer border.
R (=2) string of

integers
Defines the position of a decimal point in cells containing numbers. Used if
decimal alignment is requested (see global macro variables &DL1, DL2, and so
on below). The number of elements in the string defining R must be either 1 or
must be equal to the number of columns (N). If R has one element, this value is
used for all columns. If the element or the string R is less than 32, the decimal
point is placed at (R/64)*(width of the cell) from the right border of the cell
(for example, if R=16, then the decimal point is placed at the three-quarters of
the cell width). If R>32, then the decimal point is placed just to the left from
the middle of the cell.

O (=P) P or L O=P requests a portrait orientation for the page; O=L requests a landscape
orientation.

H (=0) 0, A, or a
string of
integers

Specifies which cells have horizontal borders. H=A requests that all cells have
horizontal borders. H=1 3 5 specifies that 1st, 3rd, and 5th cells have horizontal
borders. H=0 specifies that no cell has a horizontal border. Placement of the
border (top or bottom) is determined by the value of a macro parameter hline

V (=0) 0, A, or a
string of
integers

Specifies which cells have right borders. V=A requests that all cells have right
borders. V=1 3 5 specifies that 1st, 3rd , and 5th cells have right borders. If V=0,
then no cell has a right border.

HLINE (=B) B or T Specifies horizontal border placement, top (T) or bottom (B).
LINE (=S) S or DB Defines the line style for outer horizontal border, single (S) or double (DB).
LAST (=0) 0 or 1 LAST=1 is used for the last row of the table to enable the double bottom

border.
W integer Specifies the width of the table in inches; if decimal number is needed, omit the

decimal point (for example, W=5 means 5” and W=55 means 5.5”). Specified
width must be less than 10 inches (W=100 means 1”, W=110 means 1.1”)

16

Figure 6: Explanation of the Global Macro Variables Defined by the Macro %RTF

&BL, &BC,
&BR

Used with a PUT statement to indicate the beginning of the first column in a row.
Mandatory, unless a &DL1variable is used instead. The last character defines the
justification of the text in the first cell (R=right, L=left, C=center)

&BL, &BC,
&BR

Used with a PUT statement to indicate the beginning of each column in a row except the
first one. Mandatory for each column, unless &DL* is used instead, where * stands for
explicit column number. The last character defines the justification of the text in the cell
(R=right, L=left, C=Center).

&DL1, &DL2,
and so on

Used to define a decimal alignment within a column. If used instead of &BL, &BC,
&BR, &CL, &CC or &CR, the number ending &DL* must match the column number.
The position of the decimal point is defined by a macro variable R.

&E Indicates the end of a row. Mandatory.
&PAR Inserts a paragraph mark. Used to separate two tables from each other (for example, if

you define the first table with B=0 option for titles and the second table with B=1). Note:
Do not use a “PUT” statement with this variable, because put is a part of its definition.

&NEWPAGE Inserts a page break. Note: Do not use a PUT statement with this variable, because PUT
is a part of its definition.

&NL Inserts an empty row in a table. Use this variable with a PUT statement.

Figure 7: Other Useful RTF Keywords

\B, \B0 turns bold font on (\B) and off (\B0) PUT&BC “\B Title \B0” &E;
\I , \I0 turns italic font on (\I) and off (\I0) PUT &BC “\I Title \I0” &e;
\UL, \UL0 turns underline on (\UL) and off (\UL0) PUT &BC “\ul Title \ul0” &e;
\F0 turns times new roman font on (default) See below
\F1 turns Symbol font on “\f1 b\f0 -Agonist” will produce

“β-Agonist”
\SUB,
\SUPER

turns subscript and superscript on “1 {\super st} and” will produce “1st

and”
\NOSUPERSUB turns both subscript and superscript off “1\super st\nosupersub and” will

produce “1st and”
\FSXX used to define the font size (in 2*points) \FS20 defines a font size 10

“\fs28 Note” will produce “Note”

17

Appendix B - About the Word Macro InsertAllFiles

The macro InsertAllFiles can be installed by downloading the proper Word template. There are two
versions of the macro InsertAllFiles provided with this article. One is for Word 97; the other is for Word
6.0/95. Inst_97.dot is the file to download for use with Word 97; the text for this interface is shown in
Appendix C.2. Inst_6.dot is the file to download for use with Word 6.0/95; the text for this interface is
shown in Appendix D.2.

The version for Word 97 has all the functionality described in this article; however, the version for Word
6.0/95 is more limited. Two of the most important limitations of this code follow:

1. The user must hard-code all drive letters to be used in the macro code.

2. There is no provision for saving or restoring the settings.

From either template you can view the code of the macro without installing it on your system. If you choose
to install the macro, you can run it by selecting its name from the Tools/Macro window and clicking on
“Run”. Alternatively, you can place a button invoking the macro on the toolbar. Refer to MS Help for
instructions to do so.

Follow these steps to download the Word 97 version of InsertAllFiles macro:

1. Download the Word 97 template from the following web location:
http://www.sas.com/techsup/download/observations/obswww13/inst_97.dot

2. Open the template document in Word 97. Depending on your browser configuration, the template
may open automatically when you download it; if not, you must save it on your hard drive and and
open it manually.

3. Follow the instructions provided in the template to install the macro or to view the code. The code
is also available in this article as Appendix C.1.

Follow these steps to download the Word 6.0/95 version of InsertAllFiles macro:

1. Download the Word 6.0/95 template from the following web location:
http://www.sas.com/techsup/download/observations/obswww13/inst_6.dot

2. Open the template document in Word 6.0/95. Depending on your browser configuration, the
template may open automatically when you download it; if not, you must save it on your hard
drive and and open it manually.

3. Follow the instructions provided in the template to install the macro or to view the code. The code
is also available in this article as Appendix D.1.

18

Appendix C - Macro InsertAllFiles for Word 97

 Appendix C.1 - Macro Code
’__
’ The code for the form frmInsertAllFiles.
’__

VERSION 5.00
Begin {C62A69F0-16DC-11CE-9E98-00AA00574A4F} frmInsertAllFiles
 Caption = "Select Files to Insert"
 ClientHeight = 7620
 ClientLeft = 45
 ClientTop = 330
 ClientWidth = 10425
 OleObjectBlob = "frmInsertAllFiles.frx":0000
 StartUpPosition = 1 ’CenterOwner
End
Attribute VB_Name = "frmInsertAllFiles"
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

’ copyright Iza Peszek, Merck & Co. Inc., 1998
’ All Rights Reserved
Dim currentExt As String
Dim currentTitExt As String
Dim currentPath As String
Dim currentFileName As String

Dim myDialog As Dialog

Dim msg As String
Dim sel_file As String, nextfile As String, prev_file As String
Dim potentialGraphFile As String, potentialGraphPath As String
Dim potentialTitleFile As String, potentialTitlePath As String
Dim pgfname As String, ptfname As String, ptfext As String
Dim tmp As String
Dim sName As String, SFN As String
Dim i As Integer, j As Integer, k As Integer
Dim selected_position As Integer

Dim ext(40)
Dim titext(40)
Dim allFiles() As String

Private Sub GetFilesAndDirs(myPath As String, ext As String)
’ function to populate
’ list box lstDirectoryContent with files in the selected directory
’ input parameters: directory name, extension of files to filter

’print path to current directory in label lblCurrentDirectory
lblCurrentDirectory.Caption = myPath

’populate files list
ChDir myPath
ReDim allFiles(0)

19

j = 0
If Right(myPath, 1) <> "\" Then myPath = myPath & "\"
currentFileName = Dir(ext, vbNormal)
Do Until currentFileName = ""
 ’Ignore the current directory and the encompassing directory.
 If currentFileName <> "." And currentFileName <> ".." Then
 If (GetAttr(myPath & currentFileName) And vbNormal) < 16 Or _
 (GetAttr(myPath & currentFileName) And vbNormal) >= 32 Then
 ReDim Preserve allFiles(j)
 allFiles(j) = currentFileName
 j = j + 1
 End If
 End If
currentFileName = Dir
Loop
’sort array allFiles
For i = LBound(allFiles) To (UBound(allFiles) - 1)
 For j = (i + 1) To UBound(allFiles)
 If UCase(allFiles(i)) > UCase(allFiles(j)) Then
 tmp = allFiles(i)
 allFiles(i) = allFiles(j)
 allFiles(j) = tmp
 End If
 Next j
Next i
’populate listbox
lstDirectoryContent.List = allFiles
End Sub
Private Sub InsertFileIntoList(PositionFrom As Integer, PositionTo As
Integer)
’positionFrom, positionTo are file numbers starting with 1
 lstFilestoProcess.AddItem Str(PositionTo), PositionTo
 lstFilestoProcess.List(PositionTo, 1) =
lstDirectoryContent.List(PositionFrom)
 lstFilestoProcess.List(PositionTo, 2) = lblCurrentDirectory
 For k = (PositionTo) To (lstFilestoProcess.ListCount - 1)
 lstFilestoProcess.List(k, 0) = Str(k + 1)
 Next
End Sub

Private Sub cbSave_Click()
’allows user to save the settings of the current section
’ ask for filename to save
sName = InputBox(prompt:="Enter a unique name for these settings", _
 Title:="Save Settings", _
 Default:="Mylist")
SFN = "C:\InsertAllFiles.txt"
’file name for PrivateProfileString file
’System.PrivateProfileString("C:\InsertAllFiles.txt", "MacroSettings", _
 "LastFile") = ActiveDocument.Fullname
End Sub

Private Sub cbRestore_Click()

End Sub

Private Sub cmbFileFilter_Change()
’ after user changes filter for file extension,
’ update file list
Call GetFilesAndDirs(lblCurrentDirectory.Caption, cmbFileFilter.Text)
End Sub

20

Private Sub cmbTitExt_Change()
’titext_ = cmbTitExt.Text
End Sub

Private Sub cmdAdd_Click()
’check if file is selected in lstDirectoryContent
’if no file selected then do nothing
If lstDirectoryContent.ListIndex < 0 Then Exit Sub

If lstFilestoProcess.ListIndex = -1 Then
’ if no file selected in lstListofFile, append file at the end
Call InsertFileIntoList(lstDirectoryContent.ListIndex,
lstFilestoProcess.ListCount)

Else
 ’ if file is selected in lstFilesToProcess, insert new file below it
 Call InsertFileIntoList(lstDirectoryContent.ListIndex,
lstFilestoProcess.ListIndex + 1)
End If
’set focus in lstDirectoryContent on next file
If lstDirectoryContent.ListIndex < lstDirectoryContent.ListCount - 1
Then
 lstDirectoryContent.ListIndex = lstDirectoryContent.ListIndex + 1
End If
If (lstFilestoProcess.ListIndex < lstFilestoProcess.ListCount - 1 _
 And lstFilestoProcess.ListIndex > -1) Then
 lstFilestoProcess.ListIndex = lstFilestoProcess.ListIndex + 1
End If

End Sub

Private Sub cmdAddAll_Click()

If lstFilestoProcess.ListIndex = -1 Then
 ’if no file selected in lstFilestoProcess, add all new files at the
end

 For i = 0 To (lstDirectoryContent.ListCount - 1)
 Call InsertFileIntoList(i, lstFilestoProcess.ListCount)
 Next
Else
 ’if file is selected in lstFilestoProcess, add all new files below it
 selected_position = lstFilestoProcess.ListIndex
 For i = 0 To (lstDirectoryContent.ListCount - 1)
 Call InsertFileIntoList(i, selected_position + 1)
 selected_position = selected_position + 1
 Next
End If
End Sub

Private Sub cmdCancel_Click()
Me.hide
End
End Sub

Private Sub cmdDown_Click()
’check if file is selected and that it is not the last

i = lstFilestoProcess.ListIndex

21

If i > -1 And i < (lstFilestoProcess.ListCount - 1) Then

’move 2nd column
 sel_file = lstFilestoProcess.List(i, 1)
 nextfile = lstFilestoProcess.List(i + 1, 1)
 lstFilestoProcess.List(i + 1, 1) = sel_file
 lstFilestoProcess.List(i, 1) = nextfile
’move 3rd column
 sel_file = lstFilestoProcess.List(i, 2)
 nextfile = lstFilestoProcess.List(i + 1, 2)
 lstFilestoProcess.List(i + 1, 2) = sel_file
 lstFilestoProcess.List(i, 2) = nextfile
’keep focus on previous file
lstFilestoProcess.ListIndex = i + 1

End If
End Sub

Private Sub cmdOK_Click()
’hide form
Me.hide
End Sub

Private Sub cmdRemove_Click()
’check if file is selected in lstFilestoprocess
’if no file selected then do nothing
If lstFilestoProcess.ListIndex < 0 Then Exit Sub

 lstFilestoProcess.RemoveItem lstFilestoProcess.ListIndex
 For i = (lstFilestoProcess.ListIndex) To _
 (lstFilestoProcess.ListCount - 1)
 lstFilestoProcess.List(i, 0) = Str(i + 1)
 Next

End Sub

Private Sub cmdRemoveAll_Click()
For i = 0 To lstFilestoProcess.ListCount - 1
 lstFilestoProcess.RemoveItem 0
Next
End Sub

Private Sub cmdRestore_Click()
’restore previously saved settings
’ display a FileOpen dialog box
With Dialogs(wdDialogFileOpen)
 ans = .Display
 SFN = .Name
End With
’ add path to file name
If Right(CurDir, 1) = "\" Then
 SFN = CurDir & SFN
Else
 SFN = CurDir & "\" & SFN
End If
If ans <> -1 Then
 ’if user cancelled, do nothing
 Exit Sub
Else
 ’if user selected file, retrieve the settings

22

 ’get list of files
 ’get size of the list
 k = System.PrivateProfileString(SFN, "FileList", "ListSize")
 ’clearlist
 lstFilestoProcess.Clear
 ’get list
 For i = 0 To (k - 1)
 lstFilestoProcess.AddItem Str(i + 1)
 lstFilestoProcess.List(i, 1) = _
 System.PrivateProfileString(SFN, "FileList", "f" & Str(i * 2))
 lstFilestoProcess.List(i, 2) = _
 System.PrivateProfileString(SFN, "FileList", "f" & Str(i * 2 + 1))

 Next i
 ’get current directory
 lblCurrentDirectory.Caption = _
 System.PrivateProfileString(SFN, "CurDir", "CurDir")

 ’get file filter
 cmbFileFilter.Text = System.PrivateProfileString(SFN, "Preferences",
"FileFilter")
 ’get whether Insert files as links
 cbLinkid.Value = System.PrivateProfileString(SFN, "Preferences",
"LinkId")
 ’get whether Insert header
 cbHeadid.Value = System.PrivateProfileString(SFN, "Preferences",
"HeaderId")
 ’get title extension filter
 cmbTitExt.Text = System.PrivateProfileString(SFN, "Preferences",
"TitExt")
 ’get graph orientation preference
 cmbGraphOrientation.ListIndex = System.PrivateProfileString(SFN,
"Preferences", "GO")

 ’populate directory content list
 If cmbFileFilter.Text = "" Then cmbFileFilter.Text = "*.*"
 Call GetFilesAndDirs(lblCurrentDirectory.Caption,
cmbFileFilter.Text)
End If

End Sub

Private Sub cmdSave_Click()
’save current settings
’ display a FileSave dialog box
’ to enable fileSaveAs dialog box, activate word and create a new
document
’ in case none is open
Application.Activate
Documents.Add
With Dialogs(wdDialogFileSaveAs)
 ans = .Display
 SFN = .Name
End With
’ add path to file name
If Right(CurDir, 1) = "\" Then
 SFN = CurDir & SFN
Else
 SFN = CurDir & "\" & SFN
End If
’close created file

23

Application.Activate
ActiveDocument.Close savechanges:=wdDoNotSaveChanges

If ans <> -1 Then
 ’if user cancelled, do nothing
 Exit Sub
Else
 ’if user selected file, write the settings

 ’write list of files
 ’write size of the list
 System.PrivateProfileString(SFN, "FileList", "ListSize") =
lstFilestoProcess.ListCount
 ’write list
 For i = 0 To (lstFilestoProcess.ListCount - 1)
 System.PrivateProfileString(SFN, "FileList", "f" & Str(i * 2)) = _
 lstFilestoProcess.List(i, 1)
 System.PrivateProfileString(SFN, "FileList", "f" & Str(i * 2 + 1))
= _
 lstFilestoProcess.List(i, 2)
 Next i
 ’write current directory
 System.PrivateProfileString(SFN, "CurDir", "CurDir") = _
 lblCurrentDirectory.Caption
 ’write file fiter
 System.PrivateProfileString(SFN, "Preferences", "FileFilter") = _
 cmbFileFilter.Value
 ’write whether Insert files as links
 System.PrivateProfileString(SFN, "Preferences", "LinkId") =
cbLinkid.Value
 ’write whether Insert header
 System.PrivateProfileString(SFN, "Preferences", "HeaderId") =
cbHeadid.Value
 ’write title extension filter
 System.PrivateProfileString(SFN, "Preferences", "TitExt") =
cmbTitExt.Value
 ’write graph orientation preference
 System.PrivateProfileString(SFN, "Preferences", "GO") =
cmbGraphOrientation.ListIndex

End If
End Sub

Private Sub cmdSelDir_Click()

’ open word Dialog file open
’ if user selected OK, display the path and populate lstDirectorycontent
 If Dialogs(wdDialogFileOpen).Display <> 0 Then
 lblCurrentDirectory.Caption = CurDir
 ’populate lstDirectoryContent
 Call GetFilesAndDirs(lblCurrentDirectory.Caption, cmbFileFilter.Text)
End If
End Sub

24

Private Sub cmdSwitchid_Click()

’check if user selected extension for graph titles
If ((Trim(cmbTitExt.Text) = "") Or (Trim(cmbTitExt.Text) = "*.*")) Then
 MsgBox ("You must specify extension of files with titles of graph")
Else
 ’ display explanation
 msg = "Use this button only if" + Chr(13) + _
 "files with graph titles have the same name as graph files but
different extension"
 msg = msg + Chr(13) + "and"
 msg = msg + Chr(13) + "file titles immediately follow corresponding
graphs in the list"
 ’if user cancelled, do nothing
 If MsgBox(msg) = 2 Then Exit Sub
 ’ otherwise switch order of files and graphs
 For i = 1 To (lstFilestoProcess.ListCount - 1)
 potentialGraphFile = lstFilestoProcess.List(i - 1, 1)
 potentialGraphPath = lstFilestoProcess.List(i - 1, 2)
 potentialTitleFile = lstFilestoProcess.List(i, 1)
 potentialTitlePath = lstFilestoProcess.List(i, 2)
 ’separate file name and file extension
 pgfname = Mid(potentialGraphFile, 1, InStr(potentialGraphFile,
".") - 1)
 ptfname = Mid(potentialTitleFile, 1, InStr(potentialTitleFile,
".") - 1)
 ptfext = Right$(Trim(potentialTitleFile), 3)

 If (UCase(ptfext) = UCase(Mid(cmbTitExt.Text, 3, 3))) And _
 (UCase(pgfname) = UCase(ptfname)) Then
 ’if current file is a graph title file,
 ’ and file name is the same as previous file,
 ’ switch order with previous file
 lstFilestoProcess.List(i - 1, 1) = potentialTitleFile
 lstFilestoProcess.List(i - 1, 2) = potentialTitlePath
 lstFilestoProcess.List(i, 1) = potentialGraphFile
 lstFilestoProcess.List(i, 2) = potentialGraphPath
 End If
 Next
End If

End Sub

Private Sub cmdUp_Click()
’check if file is selected and that it is not the first

i = lstFilestoProcess.ListIndex
If i > 0 Then
’move 2nd column
 sel_file = lstFilestoProcess.List(i, 1)
 prevfile = lstFilestoProcess.List(i - 1, 1)
 lstFilestoProcess.List(i - 1, 1) = sel_file
 lstFilestoProcess.List(i, 1) = prevfile
’move 3rd column
 sel_file = lstFilestoProcess.List(i, 2)
 prevfile = lstFilestoProcess.List(i - 1, 2)
 lstFilestoProcess.List(i - 1, 2) = sel_file
 lstFilestoProcess.List(i, 2) = prevfile
’keep focus on previous file
lstFilestoProcess.ListIndex = i - 1

25

End If
End Sub

Private Sub CommandButton1_Click()
msg = "To improve the efficiency of file processing, you can:" + Chr(13)
+ Chr(13)
msg = msg + "1. Create files using filenames that follow intended sort
order, i.e., File1.rtf, File2.rf, File3.cgm, File4.rtf" + Chr(13) +
Chr(13)
msg = msg + "2. Store titles of graphs in rtf of text files using the
same name as corresponding graph but different extension" + Chr(13)
msg = msg + " title extension following graph extension in
alphabetical order i.e., Sales.aaa (title) and Sales.cgm (graph)" +
Chr(13) + Chr(13)
msg = msg + "3. Store all files that you want to insert into one
document in the same folder" + Chr(13) + Chr(13)
msg = msg + "4. Store your list of file if you think you may need to
reuse it" + Chr(13) + Chr(13)
msg = msg + "5. If your files may need updating, insert them as links
and update links when need arises" + Chr(13) + Chr(13)
MsgBox prompt:=msg, Title:="Tips for efficient file processing",
buttons:=vbOKOnly
End Sub

Private Sub CommandButton2_Click()
’display About information
msg = "Macro InsertAllFiles v. 2.0" + Chr(13)
msg = msg + "Copyright Iza Peszek, Merck & Co., Inc., 1998" + Chr(13)
msg = msg + "All Rights Reserved"
MsgBox prompt:=msg, Title:="About InsertAllFiles", buttons:=vbOKOnly
End Sub

Private Sub lstDirectoryContent_Click()
 LblThisFileName.Caption = lstDirectoryContent.Text
End Sub

Private Sub lstDirectoryContent_DblClick(ByVal Cancel As
MSForms.ReturnBoolean)
Call cmdAdd_Click
End Sub

Private Sub lstFilesToProcess_Click()
’display file name and path in status bar
msg = "file name: " +
lstFilestoProcess.List(lstFilestoProcess.ListIndex, 1)
msg = msg + Chr(13)
msg = msg + "directory: " +
lstFilestoProcess.List(lstFilestoProcess.ListIndex, 2)
LblThisFileName.Caption = msg

End Sub

Private Sub lstFilestoProcess_DblClick(ByVal Cancel As
MSForms.ReturnBoolean)
Call cmdRemove_Click
End Sub

26

Private Sub UserForm_Initialize()

ext(0) = "*.*"
ext(1) = "*.doc"
ext(2) = "*.rtf"
ext(3) = "*.txt"
’list more extensions if you wish

’ define extensions for files with graph titles
titext(0) = "*.tit"
titext(1) = "*.ttl"
titext(2) = "*.*" ’add your extensions
’list more title extensions if you wish

currentPath = CurDir
currentExt = "*.*"
currentTitExt = "*.ttl"

’display current path in label lblCurrentDirectory in the form
lblCurrentDirectory.Caption = currentPath

’populate form controls: list of drives, list of file extensions
’ and list of extensions for graph titles with preset values
cmbFileFilter.List() = ext
cmbFileFilter.Text = currentExt
cmbTitExt.List() = titext
cmbTitExt.Text = currentTitExt

’ populate directory content
Call GetFilesAndDirs(currentPath, currentExt)
’ display options for Graph orientation
cmbGraphOrientation.ColumnCount = 2
cmbGraphOrientation.AddItem "Portrait"
cmbGraphOrientation.List(0, 1) = 0
cmbGraphOrientation.AddItem "Landscape"
cmbGraphOrientation.List(1, 1) = 1
cmbGraphOrientation.BoundColumn = 2
cmbGraphOrientation.Style = fmStyleDropDownList
cmbGraphOrientation.ListIndex = 0
’End With

End Sub

’___
’ The code for InsertAllFile macro
’ (the part of macro that runs after user closes the form).
’ Copyright Iza Peszek, Merck & Co. Inc., 1998
’ All Rights Reserved.
’___

Dim i As Integer, tmp As Integer, sizeOfList As Integer
Dim ContOrient As Integer, ContPW As Integer, ContPH As Integer
Dim NFOrient As Integer, NFPW As Integer, NFPH As Integer

Dim titleext As String, Fullname As String
Dim fileextension As String
Dim ContFile As Object
Dim prevFile_wasTitle As Boolean

27

Public Sub InsertAllFiles()
’display form
frmInsertAllFiles.Show

’ determine the extension of graph titles
If Len(frmInsertAllFiles.cmbTitExt.Text) < 3 Then
 titleext = "..."
Else
 titleext = LCase(Right$(frmInsertAllFiles.cmbTitExt.Text, 3))
End If
’open new file and assign a name so we can refer to it
Set ContFile = Application.Documents.Add

’insert files from the list

prevFile_wasTitle = False
’used to remember if previously inserted file was a title of a graph
 sizeOfList = frmInsertAllFiles.lstFilestoProcess.ListCount - 1

For i = 0 To sizeOfList

’display message in the status bar showing progress
StatusBar = "Processing file " & Str(i + 1) & " of " & Str(sizeOfList +
1)

 ’ create full names of files (with path)
 If Right$(frmInsertAllFiles.lstFilestoProcess.List(i, 2), 1) <> "\"
Then
 Fullname = frmInsertAllFiles.lstFilestoProcess.List(i, 2) _
 & "\" & frmInsertAllFiles.lstFilestoProcess.List(i, 1)
 Else
 Fullname = frmInsertAllFiles.lstFilestoProcess.List(i, 2) _
 & frmInsertAllFiles.lstFilestoProcess.List(i, 1)
 End If

’ determine the orientation of the last section of the container file
 ContFile.Activate
 ContOrient = ContFile.Sections.Last.PageSetup.Orientation
 ContPH = ContFile.Sections.Last.PageSetup.PageHeight
 ContPW = ContFile.Sections.Last.PageSetup.PageWidth

 ’ determine if file exist
 If Dir(Fullname) = "" Then

 ’if no such file exists, insert page break
 ’and the statement "file FullName was not found"
 ContFile.Activate
 If i > 0 Then Call Insert_PB_at_EOF
 Selection.EndKey Unit:=wdStory
 Selection.InsertAfter "file " & Fullname & " was not found"
 Selection.Collapse Direction:=wdCollapseEnd
 Else
 ’ if file exists
 ’ determine what kind of break is needed and insert break if needed
 ’ then insert file

 ’ determine file extension
 fileextension =
LCase(Right$(frmInsertAllFiles.lstFilestoProcess.List(i, 1), 3))

 Select Case fileextension

28

 Case "cgm", "tif", "jpg", "wmf", "bmp", "gif"
 ’ check if previous file was a graph title
 ’ if so, insert paragraph
 ’ if not, check if last section has orientation specified for
graphs
 ’ if so, insert page break
 ’ if not, insert section break and apply appropriate
orientation
 ContFile.Activate
 If prevFile_wasTitle Then
 With Selection
 .EndKey Unit:=wdStory
 .InsertParagraphAfter
 .Collapse Direction:=wdCollapseEnd
 End With
 Else
 If ContOrient =
frmInsertAllFiles.cmbGraphOrientation.Value Then
 If i > 0 Then Call Insert_PB_at_EOF ’insert page break
 Else
 tmp = frmInsertAllFiles.cmbGraphOrientation.Value
 Call Insert_SB_at_EOF(wbPortrait, tmp * 612 + (1 - tmp)
* 792, tmp * 792 + (1 - tmp) * 612, i)
 End If
 End If

 Case titleext
 ContFile.Activate
 ’ check if last section was portrait
 ’ if so, insert page break
 ’ if not, insert section break and apply portrait orientation

 If ContOrient = wbPortrait Then
 If i > 0 Then Call Insert_PB_at_EOF
 Else
 Call Insert_SB_at_EOF(wbPortrait, 792, 612, i)
 End If
 prevFile_wasTitle = True
 ’ remember that this file was graph title

 Case "doc", "rtf", "txt"
 ’determine page orientation and page size of first section of
this file
 ’ if same as last section of the container, insert page break
 ’ if different, insert section break and apply settings

 Documents.Open FileName:=Fullname, ReadOnly:=True
 With ActiveDocument.Sections.First.PageSetup
 NFOrient = .Orientation
 NFPH = .PageHeight
 NFPW = .PageWidth
 End With
 ActiveDocument.Close

 ContFile.Activate
 If ((ContOrient = NFOrient) And (ContPH = NFPH) And (ContPW =
NFPW)) Then
 If i > 0 Then Call Insert_PB_at_EOF
 Else

29

 Call Insert_SB_at_EOF(NFOrient, NFPH, NFPW, i)
 End If

 Case Else

 ’insert page break and print warning message and skip file
insertion
 ContFile.Activate
 If i > 0 Then Call Insert_PB_at_EOF
 Selection.EndKey Unit:=wdStory
 Selection.InsertAfter "I do not know what to do with file " &
Fullname
 Selection.Collapse Direction:=wdCollapseEnd

 End Select

 ’move to the end of container file
 ContFile.Activate
 With Selection
 .EndKey Unit:=wdStory
 ’insert header with file name if user requested it
 If frmInsertAllFiles.cbHeadid.Value = True Then
 .InsertAfter Fullname
 .EndKey Unit:=wdStory
 .InsertParagraphAfter
 End If
 .Collapse Direction:=wdCollapseEnd
 .EndKey Unit:=wdStory
 .Collapse Direction:=wdCollapseEnd
 End With
 ’insert file : documents as insert file, graphs as insert picture
 Select Case fileextension
 Case "cgm", "tif", "jpg", "wmf", "bmp", "gif"
 ’insert graphs
 ActiveDocument.InlineShapes.AddPicture _
 FileName:=Fullname,
linktofile:=frmInsertAllFiles.cbLinkid.Value, _
 Range:=Selection.Range, savewithdocument:=True
 Selection.EndKey Unit:=wdStory
 Selection.Collapse Direction:=wdCollapseEnd
 Case "doc", "rtf", "txt", titleext
 ’insert recognized documents and graph titles
 Selection.InsertFile FileName:=Fullname, _
 link:=frmInsertAllFiles.cbLinkid.Value
 Selection.Collapse Direction:=wdCollapseEnd
 Case Else
 ’ do nothing with other files
 End Select

 End If

Next
End Sub
Private Sub Insert_PB_at_EOF()
’ inserts page break at the end of active document
 With Selection
 .EndKey Unit:=wdStory
 .Collapse Direction:=wdCollapseEnd
 .Range.InsertBreak Type:=wdPageBreak
 .Collapse Direction:=wdCollapseEnd

30

 End With
End Sub
Private Sub Insert_SB_at_EOF(PageOrient, PageHt, PageWdt, SectBreak As
Integer)
’ inserts Section break at the end of active document if SectBreak>0
’ applies specified settings
Dim NewSection As Object
 If SectBreak > 0 Then
 Set NewSection = ActiveDocument.Sections.Add
 Else
 Set NewSection = ActiveDocument.Sections.Last
 End If

 With NewSection.PageSetup
 .Orientation = PageOrient
 .PageHeight = PageHt
 .PageWidth = PageWdt
 End With
 Set NewSection = Nothing

End Sub

 Appendix C.2 - Template Text for Word 97

To install: Click on the button below to install the macro InsertAllFiles.

To view macro code:

• Click on Tools/Macro/Visual Basic Editor.
• Double-click on the object frmInsertAllFiles (located in the folder Forms in Project window) to

displays the form.
• Double-click anywhere on the form to view the form code.
• Double-click the module InsertAllFiles (located in the folder Modules in Project window) to view code

for the part of the macro that processes the list after the form is closed.

Troubleshooting:

If setup fails, read the notes below.

Note: Macros must not be disabled when opening this file

Setup will copy the module InsertAllFiles and the form frmInsertAllFiles to NORMAL.DOT template. If
your NORMAL.DOT template already has objects with these names, the setup will fail.

Install

31

In such a case, do the following:

• Click on Tools/Macro/Organizer
• Make sure that the macros in NORMAL.DOT are visible.
• Look for an object named InsertAllFiles in the NORMAL.DOT window.
• If such an objects exists, rename “InsertAllFiles” objects in INSTR.DOT template window.
• Repeat these steps with the InsertAllFiles object.
• Close the Organizer window.
• Click on the installation button again.

Appendix D - Macro InsertAllFiles for Word 6.0/95

 Appendix D.1 - Macro Code
’___
’ Code for the InsertAllFiles macro for Word 6.0/95.
’ Copyright Merck & Co., 1996.
’ All Rights Reserved.
’___

Dim Shared logdir$
Dim Shared titext$
Dim Shared Mylist$(0)
Dim Shared listsize
Dim Shared linkid, headid

Sub MAIN
’ change directory to the one used last time
On Error Goto init
startdir$ = \
 GetPrivateProfileString$("InsertAllFiles", "startdir$",
"c:\windows\wrdmacro.ini")
Goto endinit :
init:
startdir$ = Files$(".")
endinit:
On Error Resume Next
ChDir startdir$
On Error Goto 0

Dim subdirs$(0)
Dim filelist$(0)
Dim ListofFiles$(0)

’ list all drives that you may use here,
’ adjust dimension of drives$ if necessary
Dim drives$(4)
drives$(0) = "c:\"
drives$(1) = "e:\"
drives$(2) = "q:\"
drives$(3) = "u:\"

’ list all file extensions that you may need here,
’ adjust dimension of ext$ if necessary
Dim ext$(3)
ext$(0) = "*.*"
ext$(1) = "*.doc"
ext$(2) = "*.rtf"

32

ext$(3) = "*.txt"

’ define extensions for files with graph titles
Dim titext$(2)
titext$(0) = "*.*"
titext$(1) = "*.tit"
titext$(2) = "*.ttl"

’ initialize variables
linkid = 0
headid = 0
dobreak = 0

’ fill subdirs$ with subdirectories of current one
’ and filelist with files (pattern=ext$) of current directory
GetFilesAndDirs subdirs$(), filelist$(), ext$(0)

’ define a dialog box for user interface
Begin Dialog UserDialog 964, 440, "Pick Files to Insert", .DirList
 Text 10, 22, 100, 13, "Directories:", .dirtxt
 Text 207, 22, 100, 13, "Files:", .filtxt
 Text 10, 8, 371, 13, dirstring$, .mydir
 ListBox 10, 41, 197, 207, subdirs$(), .dir_id
 ListBox 207, 41, 150, 207, filelist$(), .myfiles
 Text 10, 284, 80, 13, "Drive:", .dr
 DropListBox 10, 300, 88, 110, drives$(), .mydrives
 ListBox 498, 40, 452, 328, ListofFiles$(), .Mylist
 Text 207, 284, 100, 13, "File Types", .ft
 ComboBox 207, 300, 110, 92, ext$(), .FileTypes
 Text 350, 274, 150, 25, "Extention of files with GraphTitless:", \
 .Text1
 ComboBox 367, 300, 110, 92, titext$(), .titext
 CheckBox 7, 396, 188, 16, "Insert Files as LINKS", .linkid
 CheckBox 7, 415, 388, 16, "Insert headers with file path", \
 .headid
 PushButton 520, 380, 288, 21, "Swith Order of Graphs/Titles", \
 .Switchid
 PushButton 368, 39, 121, 21, "Add All", .AddAll
 PushButton 368, 225, 121, 21, "Remove All", .RemoveAll
 PushButton 368, 75, 121, 21, "Add", .Add
 PushButton 368, 109, 121, 19, "Up", .Up
 PushButton 368, 139, 121, 21, "Down", .Down
 PushButton 368, 175, 121, 21, "Remove", .Remove
 OKButton 864, 380, 88, 21
 CancelButton 860, 13, 88, 21

End Dialog

’ display dialog

Dim mydlg As UserDialog
GetCurValues mydlg
x = Dialog(mydlg)

’ after dialog closes, store user selected settings in the INI file
SetPrivateProfileString "InsertAllFiles", "startdir$", Files$("."), \
 "wrdmacro.ini"

’ start processing the list

’ open a new file to hold all files from the list

33

FileNewDefault
fileout$ = WindowName$()

For i = 0 To listsize - 1
 name$ = nonum$(mylist$(i))
 ext$ = LCase$(Right$(name$, 3))
 Select Case ext$
 Case "doc", "rtf", "txt", "DOC", "RTF", "TXT"
 On Error Goto Warning
 ’ word, rtf and text documents are inserted using InsertFile
 ’ with their orientation preserved
 FileOpen .Name = name$
 Dim dlg As FilePageSetup
 GetCurValues dlg
 orient = dlg.Orientation
 FileClose 2
 Activate fileout$
 EndOfDocument
 Dim dlg As FilePageSetup
 GetCurValues dlg
 oldorient = dlg.Orientation
 ’ if necessary, insert section breaks to allow for both
 ’ landscape and portrait orientation in one file
 If oldorient <> orient Then
 If i > 0 Then InsertBreak .Type = 2
 EndOfDocument
 Select Case orient
 ’ apply original orientation of the selected file
 Case 1
 FilePageSetup .Orientation = 1,
.ApplyPropsTo = 0, \
 .PageWidth = "11 in",
.PageHeight = "8.5 in"
 Case 0
 FilePageSetup .Orientation = 0,
.ApplyPropsTo = 0, \
 .PageWidth = "8.5 in",
.PageHeight = "11 in"
 End Select
 Else
 If i > 0 Then InsertBreak .Type = 0
 End If
 ’ insert file name before the file itself
 ’ if user requested to do so
 If headid = 1 Then Insert name$
 InsertPara
 ’ insert file as copy or as link according to user request
 InsertFile .Name = name$, .Link = linkid
 dobreak = 0
 Goto getfile
 Case "cgm", "CGM"
 On Error Goto Warning
 Activate fileout$
 EndOfDocument
 Dim dlg As FilePageSetup
 GetCurValues dlg
 oldorient = dlg.Orientation
 ’ graphs will be inserted in pages oriented as portrait
 If oldorient <> 0 Then
 ’ if previous file was landscaped, insert section break

34

 ’ and apply portrait orientation
 If (i > 0 And dobreak <> - 1) Then InsertBreak
.Type = 2
 EndOfDocument
 FilePageSetup .Orientation = 0, .ApplyPropsTo =
0, \
 .PageWidth = "8.5 in", .PageHeight =
"11 in"
 Else
 If (i > 0 And dobreak <> - 1) Then InsertBreak
.Type = 0
 End If
 dobreak = 0
 ’ insert file name before the file itself
 ’ if user requested to do so
 If headid = 1 Then Insert name$
 InsertPara
 ’ insert graphic file as copy or as link
 ’ according to user request
 InsertPicture .Name = name$, .LinkToFile = 2 * linkid
 Goto getfile
 Case titext$
 ’ files holding titles graphs will be inserted in portrait
 ’ pages with no page break after title
 On Error Goto Warning
 Activate fileout$
 EndOfDocument
 Dim dlg As FilePageSetup
 GetCurValues dlg
 oldorient = dlg.Orientation
 ’ if previous file was landscaped, insert section break and
 ’ apply portrait orientation
 If oldorient <> 0 Then
 If (i > 0 And dobreak <> - 1) Then InsertBreak
.Type = 2
 EndOfDocument
 FilePageSetup .Orientation = 0, .ApplyPropsTo =
0, \
 .PageWidth = "8.5 in", .PageHeight =
"11 in"
 Else
 If (i > 0 And dobreak <> - 1) Then InsertBreak
.Type = 0
 End If
 dobreak = - 1
 If headid = 1 Then Insert name$
 InsertPara
 ’ insert file as copy or as link according to user request
 InsertFile .Name = name$, .Link = linkid
 Goto getfile
 Case Else
 End Select
getfile:
Next
Goto bye

’ warn user if requested file does not exist
 Warning :
 Activate fileout$
 Insert "File " + name$ + " Does Not Exist"
 InsertPageBreak

35

 On Error Goto 0
 Goto getfile
Bye:
 End Sub

’ function to list all files with specified extension in a directory
’ input parameters: directory name, name of array to hold list files,
’ extension of files

 Sub GetFilesAndDirs(subdirs$(), filelist$(), ext$)
 Redim subdirs$(CountDirectories())
 subdirs$(0) = "[..]"
 For x = 1 To CountDirectories()
 subdirs$(x) = LCase$(GetDirectory$(x))
 Next
 count = 1
 a$ = Files$(ext$) ’first file in current directory
 While Files$() <> ""
 count = count + 1
 Wend
 Redim filelist$(count - 1)
 If Files$(ext$) <> "" Then
 filelist$(0) = LCase$(FileNameInfo$(Files$(ext$), 3))
 ’ filename of the first file
 For x = 1 To count - 1
 filelist$(x) = LCase$(FileNameInfo$(Files$(), 3))
 Next
 End If
 If CountDirectories() > 0 Then SortArray subdirs$()
 If count > 1 Then SortArray filelist$()
 End Sub

’ function used to work with dialog box
 Function DirList(id$, action, wvalue)
 Select Case action
 Case 1 ’ The dialog box is displayed
 DlgValue "FileTypes", 0
 ’ print the path of the current directory
 ’ in the provided text box Mydir
 If Right$(Files$("."), 1) = "\" Then
 DlgText "mydir", Files$(".")
 Else
 DlgText "mydir", Files$(".") + "\"
 End If
 Select Case LCase$(Left$(Files$("."), 3))
 ’ populate listbox mydrives with preset drive letters
 Case "c:\"
 DlgValue "mydrives", 0
 Case "e:\"
 DlgValue "mydrives", 1
 Case "q:\"
 DlgValue "mydrives", 2
 Case "u:\"
 DlgValue "mydrives", 3
 Case Else
 End Select
 listsize = 0
Case 2 ’ The user selects a control
 Select Case id$
 Case "mydrives"
 ’ user clicks on drive or directory and all files in this

36

 ’ directory with specified extension are displayed
 ChDir DlgText$("mydrives")
 DisplayDir("mydrives", "dir_id", "myfiles", "mydir", "FileTypes")
 DirList = 1
 Case "OK"
 Select Case DlgFocus$()
 Case "OK"
 ’ user clicked on OK button : store settings
 ’ and list of files and exit dialog box
 logdir$ = DlgText$("mydir")
 linkid = DlgValue("linkid")
 headid = DlgValue("headid")
 titext$ = Right$(DlgText$("titext"), 3)
 Case "FileTypes"
 ’ user requested that only specified file extensions will be
 ’ listed: update display
 displayDir("mydrives", "dir_id", "myfiles", "mydir",
"FileTypes")
 DirList = 1
 Case "dir_id"
 ’ user double clicked on the directory: update display
 ChangeDir("dir_id", "mydir")
 displayDir("mydrives", "dir_id", "myfiles", "mydir",
"FileTypes")
 DirList = 1
 Case "myfiles"
 ’ user double-clicked on file name: add file to the list
 ’ right below highlighted file
 newfile$ = DlgText$("mydir") +
DlgText$("myfiles")
 selid = DlgValue("Mylist")
 Dim tmplist$(listsize)
 If listsize > 0 Then
 For i = 0 To selid
 tmplist$(i) = NoNum$(Mylist$(i))
 Next
 tmplist$(selid + 1) = newfile$
 For i = selid + 2 To listsize
 tmplist$(i) = Nonum$(Mylist$(i -
1))
 Next
 Else
 tmplist$(listsize) = newfile$
 selid = - 1
 End If

 Redim Mylist$(listsize)
 For i = 0 To listsize
 Mylist$(i) = MS$(i + 1) + tmplist$(i)
 Next
 DlgListBoxArray "Mylist", Mylist$()
 DlgValue "Mylist", selid + 1
 listsize = listsize + 1
 DirList = 1
 Case Else
 End Select
 Case "linkid"
 ’ user selected option that files are inserted as links :
 ’ store this info
 dirlist = 1
 Case "headid"

37

 ’ user requested that file name will be inserted below the file:
 ’ store this info
 dirlist = 1
 Case "AddAll"
 ’ user requested that all listed files are added to the list: do so
 selid = DlgValue("Mylist")
 sizetoadd = DlgListBoxArray("myfiles")
 Dim addlist$(sizetoadd - 1)
 size2 = DlgListBoxArray("myfiles", addlist$())
 If addlist$(0) <> "" Then
 Dim tmplist$(listsize + sizetoadd - 1)
 If listsize > 0 Then
 For i = 0 To selid
 tmplist$(i) = Nonum$(Mylist$(i))
 Next
 For i = selid + 1 To selid + sizetoadd
 tmplist$(i) = \
 DlgText$("mydir") +
addlist$(i - selid - 1)
 Next
 For i = selid + sizetoadd + 1 To listsize +
sizetoadd - 1
 tmplist$(i) = Nonum$(Mylist$(i -
sizetoadd - 1))
 Next
 selid = selid + sizetoadd
 Else
 For i = 0 To sizetoadd - 1
 tmplist$(i) = DlgText$("mydir") +
addlist$(i)
 Next
 selid = sizetoadd - 1
 End If
 listsize = listsize + sizetoadd
 Redim Mylist$(listsize - 1)
 For i = 0 To listsize - 1
 Mylist$(i) = MS$(i + 1) + tmplist$(i)
 Next
 DlgListBoxArray "Mylist", Mylist$()
 DlgValue "Mylist", selid
 End If
 DirList = 1
 Case "RemoveAll"
 ’ user requested that all files are removed from the list: do so
 Redim Mylist$(0)
 DlgListBoxArray "Mylist", Mylist$()
 listsize = 0
 DlgValue "Mylist", - 1
 DirList = 1
 Case "Add"
 ’ user requested that selected file is added to the list : do so
 newfile$ = DlgText$("mydir") + DlgText$("myfiles")
 selid = DlgValue("Mylist")
 selid2 = DlgValue("myfiles")
 If selid2 > - 1 Then
 sizefiles = DlgListBoxArray("myfiles") - 1
 Dim tmplist$(listsize)
 If listsize > 0 Then
 For i = 0 To selid
 tmplist$(i) = Nonum$(Mylist$(i))
 Next

38

 tmplist$(selid + 1) = newfile$
 For i = selid + 2 To listsize
 tmplist$(i) = Nonum$(Mylist$(i - 1))
 Next
 Else
 tmplist$(listsize) = newfile$
 selid = - 1
 End If

 Redim Mylist$(listsize)
 For i = 0 To listsize
 Mylist$(i) = MS$(i + 1) + tmplist$(i)
 Next
 DlgListBoxArray "Mylist", Mylist$()
 DlgValue "Mylist", selid + 1
 listsize = listsize + 1
 If selid2 < sizefiles Then
 DlgValue "myfiles", selid2 + 1
 Else
 DlgValue "myfiles", - 1
 End If
 End If
 DirList = 1
 Case "Remove"
 ’ user requested that selected file is removed from the list:
 ’ do so
 selid = DlgValue("Mylist")
 listsize = listsize - 1
 If listsize > 0 Then
 Dim tmplist$(listsize - 1)
 For i = 0 To selid - 1
 tmplist$(i) = Nonum$(Mylist$(i))
 Next
 For i = selid To listsize - 1
 tmplist$(i) = Nonum$(Mylist$(i + 1))
 Next
 Redim Mylist$(listsize - 1)
 For i = 0 To listsize - 1
 Mylist$(i) = MS$(i + 1) + tmplist$(i)
 Next
 Else
 Redim Mylist$(0)
 End If
 DlgListBoxArray "Mylist", Mylist$()
 If selid < listsize Then DlgValue "Mylist", selid
 dirlist = 1
 Case "Up"
 ’ as user requested, move selected file one position up on the list
 selid = DlgValue("Mylist")
 If selid > 0 Then
 tmp1$ = Nonum$(Mylist$(selid))
 tmp2$ = Nonum$(Mylist$(selid - 1))
 Mylist$(selid) = MS$(selid + 1) + tmp2$
 Mylist$(selid - 1) = MS$(selid) + tmp1$
 DlgListBoxArray "Mylist", Mylist$()
 DlgValue "Mylist", selid - 1
 End If
 dirlist = 1
 Case "Down"
 ’ as user requested, move selected file
 ’ one position down on the list

39

 selid = DlgValue("Mylist")
 If selid < listsize - 1 Then
 tmp1$ = Nonum$(Mylist$(selid))
 tmp2$ = Nonum$(Mylist$(selid + 1))
 Mylist$(selid) = MS$(selid + 1) + tmp2$
 Mylist$(selid + 1) = MS$(selid + 2) + tmp1$
 DlgListBoxArray "Mylist", Mylist$()
 DlgValue "Mylist", selid + 1
 End If
 dirlist = 1
 ’ If title extension is specified then rearrange the list
 ’ so titles of graphs are listed before graphs
 Case "Switchid"
 For i = 1 To listsize - 1
 name$ = nonum$(mylist$(i))
 ext$ = LCase$(Right$(mylist$(i), 3))
full$ = nonum$(LCase$(Left$(mylist$(i), InStr(mylist$(i), ".") - 1)))
pfull$ = \
nonum$(LCase$(Left$(mylist$(i - 1), InStr(mylist$(i - 1), ".") - 1)))

If (ext$ = Right$(DlgText$("titext"), 3) And full$ = pfull$) Then
 prev$ = mylist$(i - 1)
 curr$ = mylist$(i)
 mylist$(i - 1) = curr$
 mylist$(i) = prev$
End If
 Next i
 DlgListBoxArray "Mylist", Mylist$()
 Dirlist = 1
 Case Else
 End Select
Case 3
 Select Case id$
 Case "FileTypes"
 displayDir("mydrives", "dir_id", "myfiles", "mydir", "FileTypes")
 dirlist = 1
 Case "titext"
 dirlist = 1
 Case Else
 dirlist = 1
 End Select
Case Else
End Select
End Function

Sub ChangeDir(dir$, label$)
’ function that changes current directory to the selected one
’ first argument is a subdirectory name,
’ second argument is the current directory
 If DlgText$(dir$) <> "[..]" Then
 ChDir DlgText$(label$) + DlgText$(dir$)
 ’ full path=current dir + subdir
 Else
 ’ user clicked on [] to (parent directory)
 tmp = Len(DlgText$(label$))
 If tmp > 3 Then
 ’ parent directory is not root, so strip backslash from the path
 ’ to parent directory
 ChDir Mid$(DlgText$(label$), 1, tmp - 1)
 tmp$ = Files$(".")
 ChDir ".."

40

 End If
 End If
End Sub

Sub displayDir(drive$, dir$, file$, label$, type$)
’ function to populate the label with current directory and listboxes
’ with subdirectory list and with file list
 Dim subdirs$(0)
 Dim filelist$(0)
 WaitCursor 1
 GetFilesAndDirs subdirs$(), filelist$(), DlgText$(type$)
 DlgListBoxArray dir$, subdirs$()
 DlgListBoxArray file$, filelist$()
 WaitCursor 0
 dirstring$ = LCase$(Files$("."))
 If Right$(dirstring$, 1) <> "\" Then dirstring$ = dirstring$ +
"\"
 DlgText$ label$, dirstring$
End Sub

Function MS$(number)
’ function that formats numbers in the file list
If number < 10 Then
 tmp$ = " " + Str$(number) + "> "
Else
 tmp$ = Str$(number) + "> "
End If
MS$ = tmp$
End Function

Function NoNum$(word$)
’ function that strips the numbers from the file list
pos = InStr(word$, ">")
tmp$ = Mid$(word$, pos + 2, Len(word$) - pos + 1)
NoNum$ = tmp$
End Function

 Appendix D.2 - Template Text for Word 6.0/95

 Note: Do not install this macro if you are using Office 97.

 To install the macro InstallAllFiles, click on the Install macro InsertAllFiles” button on the toolbar above.

 To view macro code:

• Click on Tools/Macro.
• Select the macro InstallAllFiles from the list.
• Click on the Edit button.

 Questions and comments should be directed to:
 Iza Peszek, PhD.
 Merck & Co., Inc.
 P. O. Box 2000, RY33-404
 Rahway, NJ 07065-0900
 E-mail: peszeks@erols.com

 Modified code is not supported by the authors or SAS Institute.

41

SAS is a registered trademark or trademark of SAS Institute Inc. in the USA and other countries. OS/2 is a registered trademark of
International Business Machines Corporation, Inc.  indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Reprinted with permission from Observations. This article, number obswww13, is found at the following URL: www.sas.com/obs

1998 SAS Institute Inc.

