Automate the Creation and Manipulation of Word
Processor Ready SAS® Output

| zabella Peszek and Robert Peszek

| zabella Peszek works as a senior biometrician at Merck and Co. Previoudly, |zaworked as a senior
statistician for Ohmeda, Inc. A SAS user for nine years, her interests include statistical programming,
graphical presentation of clinical data, and automation of the report writing. Iza holds a Ph.D. in statistics
from the University of Maryland and an M.S. in applied mathematics from the University of Wroclaw,
Poland.

Robert Peszek works as alead analyst at Quality Software Systems Inc. His current areas of expertise and
interests are design of software systems and SAS, Java, and PowerBuilder programming. He hasaPh.D. in
applied mathematics from the University of Maryland and is a certified developer in Javaand PowerBuilder.
Robert has been using SAS software for five years. Robert and 1 za have been married for 12 years.

Abstract

This paper presents an automated approach to the production and manipulation of word processor ready
tables using a combination of SAS and WordBasic macros. The presented SAS macro creates Rich Text
Format (RTF) filesinaDATA _NULL_ step. Such files can be opened in any word processor equipped
with an RTF converter. Manipulation of SAS generated tables and graphs using WordBasic macrosis
discussed. The use of such techniques eliminates the need for manual word processing of SAS outputs,
resulting in cost and resource savings and in improving the quality and accuracy of reports.

Contents

* Introduction
* Creating RTF filesin SAS Software
e Automating Manipulation of SAS Outputs
» Developing Other Solutions with Microsoft Office
e Acknowledgements
* References
* Appendix A - Macro %RTF Code and Specifications
* Appendix B - About the Word Macro InsertAllFiles
* Appendix C - Macro InsertAllFiles for Word 97
* Appendix C.1 - Macro Code
* Appendix C.2 - Template Text
* Appendix D - Macro InsertAllFiles for Word 6.0/95
* Appendix D.1 - Macro Code
* Appendix D.2 - Template Text

I ntroduction

There was atime when SAS programmers did not need to worry too much about the formatting of their
outputs. Reports were produced with courier font and everybody was happy. Today, the customers are much
more demanding and want SAS outputs to be not only accurate and interesting but also eye-pleasing. In
many cases, tabulations and graphics produced with SAS software are word processed to become a part of a
bigger document. As you read this, someone is probably re-entering numbers from a SAS produced table to
create a more appealing one. In many companies, a whole staff of secretaries and proofreaders are
employed for just this purpose. Thisis costly and creates an opportunity for keying errors.

For that reason, people are trying to come up with innovative ways of transforming SAS generated tables
into great looking documents with minimal word processing. Microsoft Office, Perfect Office, and Lotus
Smart Suite became industry standards for document processing, and it seems natural to use them for this
purpose. This can be done in many ways. Seidman and Aster proposed using Microsoft Word templates and
WordBasic macros. Their ideawas to produce avery smple DATA _NULL_ ASCII output, which can be
read into an MS Word template. Specia characters are inserted in DATA _NULL_ to mark places where
different formatting is to be applied via MS Word macros. Another approach is to use the ODBC interface
to read a SAS table into a Microsoft Access database and link thisMS Accesstableto MS Word. We tried
these methods and found them useful, yet both methods have some drawbacks. First of all, a considerable
programming effort is required for each new table, which makes automation problematic. Second, these
methods are not easily implemented by an average SAS programmer because some proficiency is required
in VisualBasic, WordBasic, and MS Access programming. There are also some concerns about the system
stability because the full automation would require flipping control between SAS and other applications.

We propose here yet another approach, which is versatile and easy to implement. Our method isto use a
SASDATA _NULL_ step to produce a document with Rich Text Format (RTF) specification. The RTF
specification is a method of encoding formatted text and graphics for easy transfer between applications. An
RTF file consists of unformatted text, control words, control symbols, and groups (readers familiar with
LaTey or Tex will find many similarities between them and the RTF). Most word processors can convert
RTF filesinto their native format, which makes RTF files platform- and application-portable. That is, the
same output can be opened in MS Word, WordPerfect, or other word processor equipped with an RTF
converter (even on different operating system) with no loss of formatting. Of course, not all SAS
programmers are familiar with the RTF language, and we wanted a method that can be widely useful, so we
developed a SAS macro to assist usin creation of RTF files. Y ou need only to learn the syntax of this macro
to be able to write RTF files. This macro is used within aDATA _NULL_ step in away very similar to the
regular PUT statement, and it is quite easy to learn. The unformatted text isinserted with a PUT statement,
while macro variables provide appropriate control words and symbols. Moreover, users familiar with RTF
language can easily expand the macro to suit their needs.

We describe the usage of this macro in a simple example in “Creating RTF files in SAS Software”.
Appendix A lists the code of the macro and a detailed technical description. During extensive user testing at
Merck Research Labs, this macro went through a series of improvements. Several SAS programmers with
different levels of SAS skills used it and proposed changes and enhancements. Its present shape reflects
their experience.

When we started mass production of MS Word ready SAS outputs (tables and graphs), we learned one
lesson: a large number of outputs is difficult to manage manually! If you want to insert 100 tables (some of
them in portrait, others in landscape) and 50 graphs into one document, or if you simply want to print them,
be prepared for a long and tedious task! Thus, the next natural step for us was to automate this common file
manipulation. Again, we tried a couple of methods and decided that using MS Word macro capabilities was
the most feasible. MS Word macros can be extremely useful to a SAS programmer. They can range from
very simple to very complicated. A few lines of code can accomplish simple tasks, such as printing all files
in a certain directory with one mouse click or automatic formatting of standard SAS outputs upon opening
in MS Word. The latter operation could amount to applying courier font when *.lis file is opened, or you

can get more fancy and try to automatically determine (and set) an appropriate font size and page
orientation. Once you start thinking along these lines, you will probably find many ways to cut down on
manual labor and make your work more efficient using macro tricks. Some ideas that worked for us are
presented in later sections. They include automation of the file inserting and file comparison processes.

Creating RTF filesin SAS Software

The following example illustrates the concept behind RTF programming in SAS software. We start with a
simple table produced in atraditional way using a PUT statement.

Example 1
/* Create a sinple data set to use with the table */

data test;
i nput name trt n nmean std nedian ;
car ds;
1 1 69 32. 8841 12. 5047 31
1 2 67 34.6119 13. 7631 33
1 3 136 33. 7353 13. 1195 31
2 1 69 67. 2464 4. 0959 66
2 2 67 67.2090 3.7961 67
2 3 136 67.2279 3. 9365 66

proc sort; by name trt;

proc format;

val ue namefnt 1 = ' Age (years)’
2 = "Height (in)’;

value trtfm 1 = ' Control '
2 = 'Experinmental Test Drug’
3 ="Al "

%et titlel = Sinple Sunmary Statistics;

data _null _;

file "u:\test.txt’;

set test end=eof ;
by nane trt;

titell = "&itlel";
linel = repeat ("_", 80);
/* center titles on the page */
tl = (90 - length(titell))/2;
/*define starting location for each columm */

cl = 1;
c2 = 17;
c3 = 43;
c4 = 51;
c5 = 70;

if n_=1 then do;
put @1 titel1;
put / @1 linel,;
put/ @cl 'Variable' @c2 'Treatment' @c3+2 'N' @c4+2 '‘Mean + SD'
@c5 'Median’;
put/ @cl linel;
end;

if last.name then put ;
if first.name then put @cl1 name namefmt. @;
put @c2 trt trtfmt.

@c3 N 3.
@c4 mean 5.2+ 1'+ +1 std 5.2
@c5 median 5. ;
if last.name then put @cl linel,;
run;

Figure 1 shows the table produced by this code. To preserve a proper alignment of the columns, when
inserting in aM S Word document, the font used for this table has to be fixed size, for example, courier.

Figurel
Sinmple Summary Statistics
Variable Treatment N Mean + SD Median
Age (years) Control 69 32.88+12.50 31
Experimental Test Drug 67 34.61 +13.76 33
All 136 33.74+13.12 31
Height (in) Control 69 67.25% 4.10 66

Experimental Test Drug 67 67.21+ 3.80 67

All 136 67.23+ 3.94 66

We will now demonstrate how such atable can be produced using the macro %RTF. Although the code
looks much more complicated, using this macro allows for a great flexibility in table formatting (as we
discuss later).

/* We assune that macro rtf has been conpiled. */

0001 data_null_;

0002 file 'c:\test.rtf";

0003 set test end=eof ;

0004 by name trt;

0005

0006 if _n_=1 then do;

0007 %rtf(0); * initialize table;

0008 9%rtf(1, b=0); * define a row with 1 column, no borders;
0009 put &bc "&titlel" &e;

0010 ∥ * insert empty line;

0011 %rtf(5,23 121, b=1, h=a, v=a, s=120 120);

0012 * define a row with 5 columns, with borders (vertical and

0013 horizontal);

0014 put &bc 'Variable' &cc 'Treatment' &cc 'N' &cc 'Mean + SD
0015 &cc 'Median' &e;

0016 end;

0017

0018 if first.name then do;

0019 %rtf(5, 23121, b=1, v=a); * horizontal border turned off;
0020 end,;

0021

0022 if last.name then do;

0023 %rtf(5,23 121, b=1, v=a);

0024 put &nl;

0025 %rtf(5,23 121, b=1, v=a, h=a); * horizontal border turned on;
0026 end,;

0027

0028 if first.name then put &bl name namefmt. @;
0029 else put &bl @;

0030

0031 put &cl trt trtfmt.

0032 &cc N 3.

0033 &ccmean 5.2 +1'+' +1 std 5.2
0034 &cc median 5. &e;

0035

0036 if eof then do;

0037 %rtf(100); * close table;
0038 end;

0039 run;

Figure 2 shows that the output from this program, when opened in an ASCII editor, looks formidable.

Figure2: The RTF File Code

{\rtf1\ans \deffO\deflang1033{ \fonttbl{ \fO\froman Times New Roman;}
{\f1\froman\fcharset2\fprg2 Symbol;} }

\trowd\trgaph108\trleftO\trgc

\celIx9000\pard

\pard

\intbl\qc\sb30\sa30 Table 2\cell\intbl\row\pard

\intbl\qc\sb30\sa30 Simple Summary Statistics\cel \intbl\row\pard

\pard\par

\trowd\trgaph108\trleftO\trgc

\trbrdrt\brdrs\brdrw15\trbrdri\brdrs\brdrw15
\trbrdrb\brdrs\brdrw15\trbrdrr\brdrs\brdrw15

\clbrdrb\brdrhair\clbrdrr\brdrhair\cel Ix2000\cl brdrb\brdrhair\clbrdrr
\brdrhair\celIx5000\cl brdrb\brdrhair\clbrdrr\brdrhair\cel Ix6000\c| brdrb
\brdrhair\clbrdrr\brdrhair\cel Ix8000\cl brdrb\brdrhair\clbrdrr\brdrhair\cel IX9000\pard
\intbl\qc\sb120\sa120 Variabl é\cell\pard\intbl\qc\sh120\sal20 Treatment
\cell\pard\intb\qc\sb120\sa120 N\cell\pard\intbl\qc\sb120\sa120 Mean + SD
\cell\pard\intb\qc\sb120\sa120 Median\cellintbl\row\pard
\trowd\trgaph108\trleftO\trqc

\trbrdrt\brdrs\brdrw15\trbrdri\brdrs\brdrwl15
\trbrdrb\brdrs\brdrw15\trbrdrr\brdrs\brdrw15
\clbrdrr\brdrhair\cellx2000\clbrdrr\brdrhair\cellx5000\clbrdrr\brdrhair\cellx6000
\clbrdrr\brdrhair\cellx8000\clbrdrr\brdrhair\cellx9000\pard

\intb\ql\sb30\sa30 Age (years)\cell\pard\intb\q\sb30\sa30 Control
\cell\pard\intb\qc\sb30\sa30 69\cell\pard\intbl\qc\sb30\sa30 32.88 + 12.50
\cell\pard\intb\qc\sb30\sa30 31\celhintbl\row\pard

\intb\ql\sb30\sa30 \cell\pard\intb\ql\sb30\sa30 Experimental Test Drug\cell
\pard\intbl\qc\sb30\sa30 67\cell\pard\intbl\qc\sb30\sa30 34.61 + 13.76\cell
\pard\intbl\qc\sh30\sa30 33\cell\intbl\row\pard
\trowd\trgaph108\trleftO\trqc

\trbrdrt\brdrs\brdrw15\trbrdri\brdrs\brdrwl15
\trbrdrb\brdrs\brdrw15\trbrdrr\brdrs\brdrw15
\clbrdrr\brdrhair\cellx2000\clbrdrr\brdrhair\cellx5000\clbrdrr\brdrhair\cellx6000
\clbrdrr\brdrhair\cellx8000\clbrdrr\brdrhair\cellx9000\pard
\intb\ql\sb30\sa30 \cell\pard\intbl\qc\sb30\sa30 \cell\pard\intbl\qc\sbh30\sa30
\cell\pard\intbl\qc\sb30\sa30 \cell\pard\intb\qc\sbh30\sa30 \cell\intb\row\pard
\trowd\trgaph108\trleftO\trqc

\trbrdrt\brdrs\brdrw15\trbrdri\brdrs\brdrwl15
\trbrdrb\brdrs\brdrw15\trbrdrr\brdrs\brdrw15
\clbrdrb\brdrhair\clbrdrri\brdrhair\cellx2000\clbrdrb\brdrhair\clbrdrr\brdrhair
\cellx5000\clbrdrb\brdrhair\clbrdrri\brdrhair\cellx6000\clbrdrb\brdrhair\clbrdrr
\brdrhair\cellx8000\clbrdrb\brdrhair\clbrdrr\brdrhair\cellx9000\pard
\intb\ql\sb30\sa30 \cell\pard\intbl\ql\sb30\sa30 All
\cell\pard\intb\qc\sb30\sa30 136\cell\pard\intbl\qc\sb30\sa30 33.74 + 13.12
\cell\pard\intb\qc\sb30\sa30 31\celhintbl\row\pard
\trowd\trgaph108\trleftO\trqc

\trbrdrt\brdrs\brdrw15\trbrdri\brdrs\brdrwl15
\trbrdrb\brdrs\brdrw15\trbrdrr\brdrs\brdrw15
\clbrdrr\brdrhair\cellx2000\clbrdrr\brdrhair\cellx5000\clbrdrr\brdrhair\cellx6000
\clbrdrr\brdrhair\cellx8000\clbrdrr\brdrhair\cellx9000\pard
\intbI\ql\sb30\sa30 Height (in)\cell\pard\intbl\ql\sb30\sa30 Control
\cell\pard\intb\qc\sb30\sa30 69\cell\pard\intb\qc\sb30\sa30 67.25 + 4.10\cell

\pard\intbl\qc\sb30\sa30 66\cel\intbl\row\pard

\intbl\ql\sh30\sa30 \cell\pard\intbl\ql\sh30\sa30 Experimental Test Drug\cell\pard
\intbl\qc\sb30\sa30 67\cell\pard\intbl\qc\sb30\sa30 67.21 + 3.80\cell\pard\intbl
\qc\sb30\sa30 67\celhintb\row\pard

\trowd\trgaph108\trleftO\trgc

\trbrdrt\brdrs\brdrw15\trbrdrl\brdrs\brdrw15
\trbrdrb\brdrs\brdrw15\trbrdrr\brdrs\brdrwl15
\clbrdrr\brdrhair\cellx2000\clbrdrr\brdrhair\cellx5000\clbrdrr\brdrhair\cellx6000
\clbrdrr\brdrhair\cellx8000\clbrdrr\brdrhair\cellx9000\pard

\intb\ql\sb30\sa30 \cell\pard\intbl\qc\sb30\sa30 \cell\pard\intbl\qc\sb30\sa30
\cell\pard\intbl\qc\sb30\sa30 \cell\pard\intbl\qc\sb30\sa30 \cellintbl\row\pard
\trowd\trgaph108\trleftO\trgc

\trbrdrt\brdrs\brdrw15\trbrdrl\brdrs\brdrw15
\trbrdrb\brdrs\brdrw15\trbrdrr\brdrs\brdrwl15
\clbrdrb\brdrhair\clbrdrr\brdrhair\cellx2000\clbrdrb\brdrhair\clbrdrr\brdrhair\cellx5000
\clbrdrb\brdrhair\clbrdrr\brdrhair\cellx6000\clbrdrb\brdrhair\clbrdrr\brdrhair\cellx8000
\clbrdrb\brdrhair\clbrdrr\brdrhair\cellx9000\pard

\intb\ql\sb30\sa30 \cell\pard\intbl\ql\sb30\sa30 All

\cell\pard\intbl\qc\sb30\sa30 136\cell\pard\intbl\qc\sb30\sa30 67.23 + 3.94
\cell\pard\intb\qc\sb30\sa30 66\cell\intbl\row\pard

\pard\par }

The same output opened in MS Word is shown in Figure 3.

Figure3
Simple Summary Statistics
Variable Treatment N Mean = SD Median
Age (years) Control 69 32.88 +12.50 31
Experimental Test Drug 67 34.61 £13.76 33
All 136 33.74 +13.12 31
Height (in) Control 69 67.25+ 4.10 66
Experimental Test Drug 67 67.21 + 3.80 67
All 136 67.23 + 3.94 66

We will shortly explain the meaning of the macro variablesin the above program. Detailed technical
specifications for macro %RTF are in Appendix A. The syntax is very similar to the regular PUT statement,

but there are, however, some important differences and rules that must be followed. Each table starts with

the table declaration (or initialization) that has the form %RTF(0) (see line 0007). After that, each row is
written line-by-line and the format of each row has to be defined. The first positional parameter defines how
many columns the row will contain. In line 0008, we define a row with just one column. This column will

be centered on the page. If the row has two or more columns, we need to specify the relative widths of the
columns. For example, in line 0011, we defined arow of five columns with relative widths 2,3,1,2, and 1.

That means that the whole width of the page (minus margins, which are set by default to 1.25” on both
sides) is divided proportionally among five columns as follows. The first column is twice as wide as the
third one, the second column is three times as wide as the third one, and so on.

The parameter B defines outer borders. We set B=0 if we want arow with no borders (for example, title
row) and B=1 if outer borders are desired. The parameters V and H specify inner borders. If H=A, asin line
0011, then the row will have a horizontal border at the bottom of each cell; we could set H=1 3to get a
horizontal border at the bottom of the first and the third cell. The vertical borders are defined similarly. The
default line style for the bordersis single. Appendix A shows how to specify a double-line border. We could
also request borders at the top of the cells.

Thereis one additional parameter, S, in line 0011. This parameter takes two integers and specifies how
much space we want between the text and the top (first integer) and bottom (second integer) of the cell. In
most cases, default spacing works just fine. For aesthetic reasons, we decided to space table headers wider
than the body of the table.

The row definition stays in effect for each line of output until macro %RTF isinvoked again. In our
example, we wanted to separate the header from the table and Age from Height using horizontal borders.
For that reason, we invoke macro %RTF when first.name condition is true (to turn bottom borders off using
adefault value H=0 in line 0019) and again when the last.name condition is true (to turn bottom borders on
using H=A in line 0025).

After we defined the row appearance, we place datain the cells using afamiliar PUT statement. A very
important difference from the regular PUT statement is that we use the macro variables &BL , & BC, & BR,
&CL , &CC, and &CR at the beginning of each cell. The variables &BL, &BC, and &BR are used only for
thefirst cell inthe row; the variables & CL, & CC, and & CR are used for the remaining cells (if there are
more than one). These variables, besides initializing the cell, define the justification of atext within acell.
Thevariables & BL, & BC, and & BR request left-justified, centered, and right-justified placement,
respectively. The variables & CL, & CC, and & CR are defined similarly. In our example, the text is left-
justified in the first two columns (lines 28-31) and centered in the remaining ones (lines 32-34). Sometimes
you may prefer adecimal alignment to improve on the appearance of the numbers. The variables & DL 1,
&DL2, and so on, discussed in the Appendix, serve this purpose. The &B* or & C* variables, as
appropriate, must be used for every cell in arow. If the number of & B*/& C* variables does not match the
current number of columns, an error occurs and MS Word crashes upon opening of the document. In line
0029, we demonstrate how to an create empty cell without violating this requirement. Another important
feature is that every row ends with akeyword & E.

The variable & PAR inserts a paragraph mark (line break). We used it in line 0010 to separate the borderless
row with the title from the table proper. The variable &NL in line 0024 creates a row with all cells empty.
An alternative way to create such arow would be

put &bc &bl &bl &bl &bl &e;

Thefinal point is that we use a mandatory %RTF(100) statement at the end of our table (after writing the
last line).

We describe here the most basic features of the RTF programming in SAS. There are many more options
available. For example, you may use exotic symbols, format text asitalic, bold or underline, subscript or
superscript, or vary font size. The wrapping of text within a cell happens automatically — you will never
have to worry about overflowing long character variables! The pages can have portrait or landscape
orientation and the orientation can vary within the same output.

It should be pointed out that users can easily expand our macro to suit their needs. For example, we defined
only two basic fonts (times new roman and symbol) because these are the only fonts that we use for our
outputs. More fonts can be added easily to accommodate different needs. Users familiar with the RTF
language can also use a PUT statement with direct RTF statements (for example, RTF keywords \b and \bO
turn bold formatting on and off).

Please note that it is not recommended to edit RTF filesinside MS Word. Thisis because MS Word
encodes an RTF filein away different from our macro, and unexpected results may occur when you save
your changes. Before you attempt editing, you should save an RTF document as an MS Word document.

The only noticeable drawback of RTF programming within SAS Software is that some errorsin the RTF
file may cause MS Word to crash, and repeated crashes of MS Word in the same session may eventually
crash the system. It is almost impossible for beginners to avoid making errors while writing RTF files, so
save your work before opening a newly created RTF output! The admiration in the eyes of customers, when
they see your impressive outputs, is well worth these growing pains.

Automating Manipulation of SAS Outputs

When complex reports are generated, a great number of SAS outputs (graphs, tables, listings, analysis
outputs, and so on) needs to be word processed. Thisis usually atedious task, especidly if afinal document
consists of different types of SAS outputs. We created a M S Word macro I nsertAllFiles that greatly reduces
manual effort required to insert multiple filesinto one document. This macro was created to work with
Word documents, *.RTF files, and graphics generated in CGM format. However, it can be easily modified
to work with any other types of documents. The installation instructions for this macro are given in
Appendix B.

The basic ideaisto create alist of files to be manipulated and to insert files from thislist into a new

MS Word document. Thelist is created by point-and-click in the displayed dialog box (see Figure 4).
Before the file isinserted, its orientation is determined. If necessary, a section break is created in the new
document and orientation of the new section is set to match the orientation of the currently processed file.
Graphs (that is, *.CGM files) are inserted as picturesin an orientation of the user’s choice. All thisis
handled automatically.

Figure 4 presents the dialog box that is displayed by the InsertAllFiles macro. Objects on the left side let us

display files in a specific directory (in an alphabetical order) and are used in a way similar to Windows' File
Manager. Combo-box File Filter is used to filter file extensions. The list is created and displayed in a box

on the right side using push-buttons Add All, Add, Up, Down, Remove, Remove All; These buttons also let
us rearrange the order of the items on the list. If the alphabetical order of the files matches the order desired
in the document, we could create a list with a single click on the button Add All.

The remaining buttons and boxes are used for advanced options. The user may request that a header with a
full path and filename is inserted before the file itself. Files can be also inserted as LINKS (readers not
familiar with this useful feature are referred to Microsoft Word Help). This comes in handy if the same set

of programs generating outputs is run more than once. A master file with all the reports needs to be created
only once; when the next set of reports is generated, one needs only to update links in the master document
to replace the outputs with the new ones. Note that if the LINKS box is checked, graphs are inserted into
document as links with an option that will save a copy in the document. This is done so that the graphs do
not disappear when the link is broken.

Figure 4: A Snapshot of the InsertAllFiles Dialog Window

Select Files o Insert
Selact Directory Tims For efficient Ble processing Save Settings Restone Seitings
D:isasiSAS Programs
Files to Insert:
[Eile Hama | add Al | # Fie Name Fath
LFsize, a5 I COMBMANZ.DOC 1My Dacumerts|Merch
ediatric .cam i | 2 D85, DioC i1y Documents | Merck
3 dasaredh, et 1Py DocumernksiMer ck:
proc mived data, ez 4 padiateec.ogm D:1gas|SAS Pragrams
snndation For pediatric shudy, bt Ug |
Dhaoear |
Remine |
Remaye all |
4 | &l
Swatch arder
af Graphs
and Titles Criertation af pagss with graphs Extersion of files with graph titles
Fila Filbar: I Portrait bl i] =
. :" [T Insest Files as Links
T Insest Headers with path to the file
Files ffmws: d&igrnth.rltl:
directory: iy DocumentsiMerch: Cancel OK

One of the limitations of the MS Word graphic editor isthat it corrupts *.CGM pictures containing rotated
text. For that reason, it is sometimes convenient to store titles of the graphs produced in SAS in a separate
document to allow for their editing (we usually employ the macro %RTF to generate an RTF file with the
graph title in the same program as the graph itsdlf). It is convenient to store the graph and itstitle in the files
with the same name but with different extensions, for example, GRAPH1.CGM and GRAPHL.TTI. If the
user specifies the extension of files containing graph titlesin a combo-box, macro InsertAllFiles recognizes
the files with graph titles and does not create page breaks after these files, so that graph and itstitle are on
the same page. The Switch Order of Graphs and Titles push button automatically rearranges the list so that
graph titles precede graphs (*.CGM precedes *.TT| when listed alphabetically). This button switches the
order of neighboring filesif

1. both files have the same name
2. theextension of the first file matches the extension specified in the box
3. theextension of the second fileis CGM.

Once MS Word finishes inserting files from the list, the control is returned to MS Word. At this point, the
document can be saved, printed, or edited.

Using Save Settings and Restore Settings push buttons, the user can save the information about the order
and format of inserted documentsin an external file. Thisway, it is possible to prepare the report ahead of
time and rerun it with one push of abutton. The user can perform part of the work at one time, save settings
needed to reproduce the task, and continue work or modify these settings | atter.

It should be noted that in some operating environments memory limitations cause MS Word to lock if you

try to insert too many files. If this happens, the message “Error: File could not be found” appears. It is best
to limit the size of the list to 40-50 files. By experimenting, you will quickly learn how many files can be
safely processed at a time.

Developing Other Time Saving Solutions with Microsoft Office

There are many ways in which SAS users can draw on the power of Microsoft Office. In this section we
present some ideas we found useful, leaving the programming details to the creativity of the reader.

Sometimes users need to verify that a the new graph matches a graph generated in the past. The eye-balling
technigue may not reveal all the subtle differences so some more sensitive methods of comparisons are
needed. While MS Word allows for relatively easy comparison of documents, it cannot handle the
comparison of graphic objects. There may be specialized graphic software that is capable of comparing
graphic objects, but it is not widely available. We use a simple trick in PowerPoint to accomplish this task.
The reason for using PowerPoint is that its graphic editor can recolor imported graphic objects. We insert
both the old and the new graphs in a blank PowerPoint slide (resizing them if necessary)) and recolor the
new one in red while the old one is left black. After we align the graphs, the top graph should cover the
bottom one, and we should see only one color if the graphs are identical. The next slide inverts the layer so
that the graph that was on the bottom is now on the top. If the two graphs are identical, then the first slide
will be monochromatic black and the second one will be monochromatic red. It is fairly easy to spot the
differences because they will appear as a two-colored slide.

Of course, you could superimpose two sheets of paper and view them against a source of light to achieve
the same trick. However, we can use the described algorithm in a macro that can process a large number of
graphs and greatly simplify the work. Office 97 supports PowerPoint Basic, and such a macro program can
be implemented directly in PowerPoint. Older versions of PowerPoint do not support macros. Instead, we
can write a WordBasic macro and use a SendKeys command to perform tasks in PowerPoint. We find it
useful to employ two kinds of macros: the individual comparisons and the list comparisons. The first type
compares a graph selected in a MS Word document with the one stored in an external file. The second
macro creates the list that consists of the pairs (old graph/new graph) and performs the comparison on each
pair. If the list consists af pairs, the macro will create a PowerPoint sénadlides (2 slides for each pair)

with superimposed pairs of graphs. This set of slides can be visually scanned for the two-colored graphs.

In a similar way, the list of paired MS Word documents or RTF files can be processed and comparisons of
documents performed on each pair. In that case, the automation can be carried one step further because
WordBasic has the capability to recognize the identical documents, and it is possible to create a macro that
deletes from the list all the pairs that are identical and leaves only the pairs with files that differ.

There are probably as many uses for the MS Word macros in conjunction with SAS programming as there
are SAS programmers. You can write a macro to search all the files on a disk for the occurrence of a
specified string. You can scan saved SAS logs for error messages and warnings. If you still work in
Windows for Workgroups, you may want to create a macro to list the total size of the specified directory.
We tried to describe here a few applications that saved us a great deal of manual labor. It should be noted
that these applications could be developed and improved with VisualBasic (or another application-building
tool), which offers more advanced capabilities. However, WordBasic seems to suffice in many situations
and is widely available to most PC users without having to invest in another software. Our hope is that we
will encourage fellow SAS programmers to try these techniques. The time you spend learning the necessary
tools would be well spent — it will save you months of boring work and your company thousands of
dollars.

10

Acknowledgments

The authors would like to thank Mr. Jianmin Long of Schering Plough, Inc., for developing the macro
%RTF during histenure at Merck & Co., and all reviewers for helpful comments and suggestions.

References

Reporting from the Field: SAS Software Experts Present Real-World Report-Writing Applications,
SAS Institute Inc., 1994

Microsoft, MS-DOS, Windows, OS2/, and Apple Macintosh Applications: Rich Text Format (RTF)
Soecification, Product Support Services Application Note, 1994

Microsoft Word Developer’s Kiticrosoft Press, 1995

Appendix A — Macro %RTF Code and Specifications

%racro rtf(n, m s=30 30, b=1l, r=2, o=p, h=0, v=0, hline=b, |ine=s,
| ast =0, w=);

% author: Jianmin Long;

% Copyright Merck & Co., 1996;

% f &n=0 % hen %do;
% initialize rtf docunent;
put "{\rtfl\ansi \deffO\defl angl033"@
% define fonts;
put "{\fonttbl {\fO\froman Ti nes New Roman;}";
put "{\f1\froman\fcharset2\fprg2 Synbol;}";
put "{\f2\froman\fcharset2\fprg2 Arial;}" @
% add other fonts using f3, f3 etc...;
put "}";
% define page orientation;
% f &o=I % hen %do;
put "\ paperwl5840\ paper h12240\ | andscape ";
%end;
% define shortcuts for cell formatting;
%yl obal e par newpage;
%et e="\cell\intbl\row pard ’;
% define keyword for new page;
% et newpage=%tr(put '\page \par \pard ';);
% define keyword for |ine break;
% et par=%str(put '\pard\par ';);
%end;
% define closing for a table;
%lse %f & > 31 % hen %lo;
put "\pard\par }";
%end;
%l se %do;
%l obal dbli ne;
% define keyword for double line to use in table formatting;
%et dbline=%str(put "\sl-20 \slmultO \par \pard ';);
% break conplex paraneters r,v and h into "words";
%lo i=1 %0 WBength(&);
%f %Bength(¥%scan(&, &)) % hen %lo;, %et numof_r=& ; %nd,
%end;
%lo i =1 %0 %ength(&v);

11

%f %ength(%can(&, &)) % hen %o; % et numof v=& ; %end,
%end;
%lo i =1 % o0 % ength(&h);
%f %ength(%can(&h, &)) % hen %o; % et numof h=& ; %end;
%end;
% if all vertical borders are requested, cal cul ate how nmany
col ums
in the table and define borders coding;
% f &=a % hen %do;
%lo i=1 %0 &n;
%et vl& =\clbrdrr\brdrhair; %end;
%end;
% define vertical borders coding so only requested cell borders
show;
%l se %do;
%lo i=1 %0 &; YBet vl& =; %nd;
%f & ne 0 % hen %lo;
%lo i =1 % o0 &um of v;
Wet ii=%can(&, &);
%Wet vl& i=\clbrdrr\brdrhair; %end;
%end;
%end;

o if this is last rowin the table, nmke bottom border double
l'i ne;
% f & ast=1 % hen %lo;
%do i =1 %0 &n;
% et hl & =\cl brdr &hline\brdrdb; %end;
%end;
% for other rows, define horizontal borders coding so only
requested cell borders show;
%l se %do;
% f &=a % hen %lo;
%do i =1 %0 &n;
% et hl & =\cl brdr&hline\brdrhair; %end;

%end;
%l se %o;
o%do i=1 %0 &; %et hl& = ; %end;

%f & ne 0 % hen %lo;
%lo i =1 % o0 &um of h;
Bet ii=%can(&h, &);
% et hl&i=\clbrdr&hline\brdrhair; %end;
%end;
%end;
%end;

% define the width of the table in pixels ;
% default width is 9000 pixels for portrait and 12240 for
| andscape;
%f % ength(&w) =0 % hen %lo;
% f &o=p % hen %do;
% et tw=9000;
%end;
%l se % f &o=l % hen %lo;
% et tw=12240;
%end;
%end;
% for requested table width in inches, convert width to pixels;
%l se Y%do;
% et tw=%val (1440*&wW (10** (% ength(&w) - 1));
%end;

12

% determine if the position of all decimal alignnents is the
sanme (r=1);
%f &umof r = 1 % hen %lo;
% define the tag for the position of the decimal point ;
%f & > 32 % hen %lo;
% decimal point of 1st cell will be just left of the cell

m ddl e;
%Wet ri=%val (32 - &r);
%end;
%l se %do;
%Wet rl=&r;
% decimal point of 1st cell will be at r/64 of cell
wi dt h;

%end;
%lo i=2 %0 &; YWet r& =& 1; %nd;
% decimal points for other cells fsane as 1st cell;
%end;
%l se %do;
%lo i=1 %0 &n;
Wet r& =%can(&, &); % break paraneter r into words;
%f &r& > 32 % hen %lo;
% decinmal point of ith cell will be just left of the cell
m ddl e;
Wet r& =%val (32 - &&r &); %end;
%end;
%end;
%yl obal nl bl br bc cl cr cc nc next;
% break conplex paraneter s into distance fromtop (sb) and from
bottom (sa);
% et sb=%scan(&s, 1);
% et sa=%can(&s, 2);

% code tags for 1st cell in a row under left-, center-, and
right-justification;

%et bl="\intbl\gl\sb&sb\sa&sa ";

% et bc="\intbl\gc\sb&sbh\sa&sa ";

%et br="\intbl\gr\sb&sb\sa&sa ";

% code tags for other cells in a row under left-, center-, and
right-justification;

%et cl="\cell\pard\intbl\qgl\sb&sb\sa&sa ";

% et cc="\cell\pard\intbl\qgc\sb&sb\sa&sa ";

%et cr="\cell\pard\intbl\qgr\sb&sbh\sa&sa ";

% et next="\cell\pard";
% et nc="\cell\pard";

% f &=1 % hen %lo;

%l obal dl 1;
%Wet nl=%str("\intbl\cell\intbl\rowpard";);
%end;
%l se %do;

%lo tenmp=1 % o0 &n;
%l obal dl & enp;

%end;
Wet nl=%tr("\intbl\cell’ @);
%lo i =1 %o %val (&n-1);

%Wet nl=%tr(&l put ’\cell’ @);
%end;
%Wet nl=%tr(&l put ’\intbl\rowpard ;);

13

%end;

put "\trowd\trgaphl08\trleftO\trqgc";

% code and print tags if outer borders of the table are
request ed;
%f & = 1 % hen %do;
put "\trbrdrt\brdr& ine\brdrwl5\trbrdrl\brdrs\brdrwl5";
put "\trbrdrb\brdr& ine\brdrwl5\trbrdrr\brdrs\brdrwl5"; %end;
%f & = 1 % hen %lo;
% code and print tags if the table has only one col um;
put "&hl 1&vl 1\ cel | x& wA pard”;
% code decinmal alignnment tags for the table with only one
col um;
% et dt 1=%val ((32+(& 1))*& W 64 - 108);
%end;
%l se %do;
% code and print tags if the table has nore than one col um;
% et t=0;
%f %ength(&r) % hen %lo;
%lo i=1 %0 &n;
% et dd& =%scan(&m &i);
%et t=%val (& +&&dd&i) ;
Wet cw&i =& ; %end;
%lo i=1 %0 &n;
% et W& =%val (&&CW& *&t W &t) ;
% et dt& =%val ((32+(&&r &))*&8Ad& *& W (64*&) - 108);
put "&&hl & &&vI & \cel | x&&wW&i " @ %end;
%end;
%l se %do;
%lo i=1 %0 &n;
%et W& =%val (& *& w &n);
% et dt & =%val (&M1*(32+(&&r &))/64 - 108);
put "&&hl & &&vI & \cel | x&&wW&i " @ %end;
%end;
%end;
put "\pard";
% code tags for decinmal alignnent;
% et dl 1="\intbl\sbh&sbh\sa&sa\tqdec\tx&dt 1\t x%val (&It 1+80)\tab ";

%do i =2 %0 &n;

% et
dl & ="\cell\p
tab ";

%end;
%end;
%rend rtf;

ard\int bl \ sh&sb\ sa&sa\t qdec\ t x&&dt & \t x%eval (&&dt & +80)\

14

Figure5: Explanation of the M acro Parameters of the % RTF Macro (default valuesin parentheses)

Parameter Type Description

N integer Number of columnsin the table.

N=0 is used to initiate the table, N=100 is used to close the table.

M string of | Relative width of columns. If used, the number of elementsin the string M must
integers | be equal to the macro parameter N. If misnot specified, all columns have

equal width. (optional)

S(=3030) pair of Space (in twips) between the text and the top and the bottom of the cell,
integers | respectively.

B (=1) Oorl If B=0, table has no outer border. If B=1, table has an outer border.

R (=2) string of | Defines the position of adecimal point in cells containing numbers. Used if
integers | decimal alignment is requested (see global macro variables & DL1, DL2, and so

on below). The number of elementsin the string defining R must be either 1 or
must be equal to the number of columns (N). If R has one element, thisvalueis
used for all columns. If the element or the string R is less than 32, the decimal
point is placed at (R/64)* (width of the cell) from the right border of the cell

(for example, if R=16, then the decimal point is placed at the three-quarters of
the cell width). If R>32, then the decimal point is placed just to the left from
the middle of the cell.

O (=P) PorL O=P requests a portrait orientation for the page; O=L requests alandscape

orientation.

H (=0) 0, A, or a | Specifieswhich cells have horizontal borders. H=A requests that all cells have
string of | horizontal borders. H=1 3 5 specifies that 1%, 3", and 5" cells have horizontal
integers | borders. H=0 specifies that no cell has a horizontal border. Placement of the

border (top or bottom) is determined by the value of a macro parameter hline

V (=0) 0, A, or a | Specifieswhich cells have right borders. V=A requests that all cells have right
string of | borders. V=1 3 5 specifies that 1%, 3 , and 5" cells have right borders. If V=0,
integers | then no cell hasaright border.

HLINE(=B) |BorT Specifies horizontal border placement, top (T) or bottom (B).

LINE (=S) Sor DB | Definestheline style for outer horizontal border, single (S) or double (DB).

LAST (=0) Oorl LAST=1 isused for the last row of the table to enable the double bottom

border.

w integer Specifies the width of the table in inches; if decimal number is needed, omit the

decimal point (for example, W=5 means 5" and W=55 means 5.5"). Speci
width must be less than 10 inches (W=100 means 1", W=110 means 1.1"

15

ied

Figure 6: Explanation of the Global M acro Variables Defined by the Macro % RTF

pn.

e PUT

&BL, &BC, Used with a PUT statement to indicate the beginning of the first columnin arow.

&BR Mandatory, unless a&DL 1variable is used instead. The last character defines the
justification of the text in the first cell (R=right, L=left, C=center)

&BL, &BC, Used with a PUT statement to indicate the beginning of each column in arow except the

&BR first one. Mandatory for each column, unless & DL* is used instead, where * stands for
explicit column number. The last character defines the justification of the text in the cell
(R=right, L=left, C=Center).

&DL1, &DL2, | Used to define adecimal alignment within a column. If used instead of &BL, &BC,

and so on &BR, &CL, & CC or &CR, the number ending & DL* must match the column number.
The position of the decimal point is defined by a macro variable R.

&E Indicates the end of arow. Mandatory.

&PAR Inserts a paragraph mark. Used to separate two tables from each other (for example, if
you define the first table with B=0 option for titles and the second table with B=1). Note:
Do not use a “PUT"” statement with this variable, because put is a part of its definiti

&NEWPAGE | Inserts a page break. Note: Do not use a PUT statement with this variable, becaus
is a part of its definition.

&NL Inserts an empty row in a table. Use this variable with a PUT statement.

Figure 7: Other Useful RTF Keywords

\B, \BO turns bold font on (\B) and off (\B0) PUT&BC “\B Title \BO” &E;

\IL,\IO turns italic font on (\l) and off (\I0) PUT &BC “\I Title \IO” &

\UL, \ULO turns underline on (\UL) and off (\ULQ) PUT &BC “Wul Title \ul0” &e;

\FO turns times new roman font on (default) See below

\F1 turns Symbol font on “\f1 b\fO -Agonist” will produce
“B-Agonist”

\SUB, turns subscript and superscript on “1 {\super st} and” will produce “1

\SUPER and”

\NOSUPERSUB | turns both subscript and superscript off “lI\super st\nosupersub and” will
produce “f and”

\FSXX used to define the font size (in 2*points) \FS20 defines a font size 10
“\fs28 Note” will produce fNote’

16

Appendix B - About the Word Macro InsertAllFiles

The macro InsertAllFiles can be installed by downloading the proper Word template. There are two
versions of the macro InsertAllFiles provided with this article. Oneis for Word 97; the other isfor Word
6.0/95. Inst_97.dot is the file to download for use with Word 97; the text for thisinterfaceis shown in
Appendix C.2. Inst_6.dot is the file to download for use with Word 6.0/95; the text for thisinterfaceis
shown in Appendix D.2.

The version for Word 97 has all the functionality described in this article; however, the version for Word
6.0/95 ismore limited. Two of the most important limitations of this code follow:

1. Theuser must hard-code all drive |etters to be used in the macro code.

2. Thereisno provision for saving or restoring the settings.

From either template you can view the code of the macro without installing it on your system. If you choose
to install the macro, you can run it by selecting its name from the Tools/Macro window and clicking on
“Run”. Alternatively, you can place a button invoking the macro on the toolbar. Refer to MS Help for
instructions to do so.

Follow these steps to download Weord 97 version of InsertAllFiles macro:

1.

Download the Word 97 template from the following web location:
http://mww.sas.com/techsup/download/observations/obswww13%nAstot

Open the template document in Word 97. Depending on your browser configuration, the template
may open automatically when you download it; if not, you must save it on your hard drive and and
open it manually.

Follow the instructions provided in the template to install the macro or to view the code. The code
is also available in this article as Appendix C.1.

Follow these steps to download Weord 6.0/95 version of InsertAllFiles macro:

1.

Download the Word 6.0/95 template from the following web location:
http://www.sas.com/techsup/download/observations/obswww13/inst_6.dot

Open the template document in Word 6.0/95. Depending on your browser configuration, the
template may open automatically when you download it; if not, you must save it on your hard
drive and and open it manually.

Follow the instructions provided in the template to install the macro or to view the code. The code
is also available in this article as Appendix D.1.

17

Appendix C - Macro InsertAllFilesfor Word 97
Appendix C.1 - Macro Code

" The code for the formfrmnsertAllFiles.

VERSI ON 5. 00
Begi n { C62A69F0- 16DC- 11CE- 9E98- 00AA00574A4F} frm nsertAll Fil es

A ehj ect Bl ob
Start UpPosi tion
End
Attribute VB Nane = "frmnsertAll Files"
Attribute VB Creatable = Fal se
Attribute VB Predeclaredld = True
Attribute VB Exposed = Fal se

"frmnsertAl |l Files.frx": 0000
1 ' CenterOmner

Caption = "Select Files to Insert"
d i ent Hei ght = 7620

ClientLeft = 45

dientTop = 330

ClientWdth = 10425

copyright |Iza Peszek, Merck & Co. Inc., 1998
Al Rights Reserved

DimcurrentExt As String

DmcurrentTitExt As String

DimcurrentPath As String

DimcurrentFil eNane As String

Dim nyDi al og As Dial og

Dimnsg As String

Dimsel file As String, nextfile As String, prev file As String
Dim potential GaphFile As String, potential GaphPath As String
Dimpotential TitleFile As String, potential TitlePath As String
Dim pgfnane As String, ptfname As String, ptfext As String
Dmtnp As String

DimsNanme As String, SFN As String

Dmi As Integer, j As Integer, k As Integer

Di m sel ected_position As |nteger

D m ext (40)

Dimtitext(40)

DmallFiles() As String

Private Sub GetFil esAndDirs(myPath As String, ext As String)

" function to popul ate

list box IstDirectoryContent with files in the selected directory
i nput paraneters: directory name, extension of files to filter

"print path to current directory in label IblCurrentDirectory
I bl CurrentDirectory. Caption = myPat h

"popul ate files |ist

ChDir nyPat h
ReDi mal | Fi | es(0)

18

j =0
If Right(nmyPath, 1) <> "\" Then nyPath = nyPath & "\"
currentFil eNanme = Dir(ext, vbNormal)
Do Until currentFileName = ""
"lgnore the current directory and the enconpassing directory.
If currentFileNane <> "." And currentFileNanme <> ".." Then
If (GetAttr(myPath & currentFil eNane) And vbNormal) < 16 Or _
(GetAttr(myPath & currentFil eNane) And vbNormal) >= 32 Then
ReDi m Preserve all Files(j)
all Files(j) = currentFil eNane

] =] +1
End If
End If
currentFileName = Dir
Loop
"sort array allFiles
For i = LBound(allFiles) To (UBound(allFiles) - 1)

For j = (i + 1) To UBound(allFiles)
If UCase(allFiles(i)) > UCase(allFiles(j)) Then
tnp = allFiles(i)

allFiles(i) = allFiles(j)
allFiles(j) = tnp
End If
Next |j

Next i
"popul ate |istbox
IstDirectoryContent.List = allFiles
End Sub
Private Sub InsertFilelntoList(PositionFromAs |Integer, PositionTo As
I nt eger)
"positionFrom positionTo are file nunbers starting with 1
| st Fil est oProcess. Addltem Str(PositionTo), PositionTo
| st Fi |l estoProcess. List(PositionTo, 1) =
| st DirectoryContent. List(PositionFron
| st Fil estoProcess. List(PositionTo, 2) = IblCurrentDirectory
For k = (PositionTo) To (IstFilestoProcess. ListCount - 1)
| stFilestoProcess.List(k, 0) = Str(k + 1)
Next
End Sub

Private Sub cbSave Cick()

"all ows user to save the settings of the current section

" ask for filenane to save

sNarme = | nput Box(pronpt:="Enter a unique nane for these settings"
Title:="Save Settings",
Defaul t:="Mlist")

SFN = "C:\InsertAl |l Files.txt"

"file name for PrivateProfileString file

"System PrivateProfileString("C \InsertAlFiles.txt", "MacroSettings"
"LastFile") = ActiveDocunent. Ful | nane
End Sub

Private Sub cbRestore i ck()
End Sub

Private Sub cnbFil eFilter_Change()

" after user changes filter for file extension

update file list

Call GetFilesAndDirs(lblCurrentDirectory. Caption, cnbFileFilter. Text)
End Sub

19

Private Sub cnbTitExt _Change()
"titext _ = cnbTitExt. Text
End Sub

Private Sub cndAdd_d i ck()

"check if file is selected in |IstDirectoryContent
"if no file selected then do nothing

If IstDirectoryContent. Listlndex < 0 Then Exit Sub

If IstFilestoProcess.Listlndex = -1 Then

" if no file selected in IstListof File, append file at the end
Call InsertFilelntoList(lstDirectoryContent. Listlndex,

| st Fi | est oProcess. Li st Count)

El se
"if fileis selected in |IstFilesToProcess, insert new file below it
Call InsertFilelntoList(lstDirectoryContent.Listlndex,

| st Fi | est oProcess. Li stlndex + 1)

End If

"set focus in IstDirectoryContent on next file

If IstDirectoryContent. Listlndex < IstDirectoryContent.ListCount - 1

Then
I stDirectoryContent.Listlndex = IstDirectoryContent.Listlndex + 1

End If

If (IstFilestoProcess. Listlndex < |stFilestoProcess. ListCount - 1 _

And | st Fil estoProcess. Listlndex > -1) Then
| st Fil estoProcess. Listlndex = | stFilestoProcess.Listlndex + 1
End If

End Sub
Private Sub cndAddAIl _dick()

If IstFilestoProcess.Listlndex = -1 Then
"if no file selected in IstFilestoProcess, add all new files at the
end
For i = 0 To (IstDirectoryContent.ListCount - 1)
Call InsertFilelntoList(i, |IstFilestoProcess.ListCount)
Next
El se
"if fileis selected in IstFilestoProcess, add all new files below it
sel ected position = | stFil estoProcess. Listlndex
For i = 0 To (IstDirectoryContent.ListCount - 1)
Call InsertFilelntoList(i, selected position + 1)
sel ected position = selected position + 1
Next
End |f
End Sub
Private Sub cndCancel _dick()
Me. hi de
End
End Sub

Private Sub cndDown_d i ck()
"check if file is selected and that it is not the |ast

i = IstFilestoProcess. Listlndex

20

If i >-1 And i < (IstFilestoProcess.ListCount - 1) Then

"nmove 2nd col um
sel file = IstFilestoProcess. List(i, 1)
nextfile = IstFilestoProcess.List(i + 1, 1)
| stFilestoProcess.List(i + 1, 1) = sel _file
| stFilestoProcess.List(i, 1) = nextfile
"nmove 3rd col um
sel file = |IstFilestoProcess.List(i, 2)
nextfile = IstFilestoProcess.List(i + 1, 2)
| stFilestoProcess.List(i + 1, 2) = sel _file
| stFilestoProcess.List(i, 2) = nextfile
"keep focus on previous file
| stFil estoProcess. Listlndex =i + 1

End If
End Sub

Private Sub cndOK dick()
"hide form

Me. hi de

End Sub

Private Sub cndRenove Cick()

"check if file is selected in |stFilestoprocess
"if no file selected then do nothing

If IstFilestoProcess.Listlndex < 0 Then Exit Sub

| st Fi | est oProcess. Renoveltem | st Fi | est oProcess. Li st ndex
For i = (IstFilestoProcess. Listlndex) To _
(I stFilestoProcess. ListCount - 1)
| stFilestoProcess.List(i, 0) = Str(i + 1)
Next

End Sub

Private Sub cndRenoveAl | _dick()

For i = 0 To |IstFil estoProcess. ListCount - 1
| st Fil est oProcess. Renmoveltem O

Next

End Sub

Private Sub cndRestore_dick()
"restore previously saved settings
" display a FileQpen dial og box
Wth Dial ogs(wdDi al ogFi | eOpen)

ans = .Display
SFN = . Nane
End Wth

" add path to file nane
If Right(CurDir, 1) = "\" Then
SFN = CurDir & SFN
El se
SFN = CurDir & "\" & SFN
End If
If ans <> -1 Then
"if user cancelled, do nothing
Exit Sub
El se
"if user selected file, retrieve the settings

21

"get list of files
"get size of the list
k = System PrivateProfileString(SFN, "FileList", "ListSize")
"clearlist
| st Fi |l est oProcess. O ear
"get |ist
For i =0 To (k - 1)
| stFil estoProcess. Addltem Str(i + 1)
| stFilestoProcess.List(i, 1) = _
System PrivateProfileString(SFN, "FileList", "f" & Str(i * 2))
| stFilestoProcess.List(i, 2) = _
System PrivateProfileString(SFN, "FileList", "f" & Str(i * 2 + 1))

Next i
"get current directory
I bl CurrentDirectory. Caption = _
System PrivateProfileString(SFN, "CurDir", "CurDir")

"get file filter

cnbFileFilter. Text = System PrivateProfileString(SFN, "Preferences"
"FileFilter")

"get whether Insert files as |inks

cbLi nki d. Val ue = System PrivateProfileString(SFN, "Preferences"
"Li nkl d")

'get whether Insert header

cbHeadi d. Val ue = System PrivateProfileString(SFN, "Preferences"
"Header | d")

"get title extension filter

cnbTit Ext. Text = System PrivateProfileString(SFN, "Preferences"
"TitExt")

'get graph orientation preference

cnbG aphOrientation. Listlndex = System PrivateProfil eString(SFN
"Preferences", "GO")

"popul ate directory content |ist
If cnbFileFilter. Text = "" Then cnbFileFilter. Text = "* *"
Call GetFilesAndDirs(lblCurrentDirectory. Caption
cnbFileFilter. Text)
End If

End Sub

Private Sub cndSave i ck()

’save current settings

" display a FileSave dial og box

to enable fil eSaveAs dial og box, activate word and create a new
docunent

" in case none is open

Application. Activate

Docunent s. Add

Wth Dial ogs(wdDi al ogFi | eSaveAs)

ans = .Display
SFN = . Nane
End Wth

add path to file nane

If Right(CurDir, 1) = "\" Then
SFN = CurDir & SFN

El se
SFN = CurDir & "\" & SFN

End If

"close created file

22

Application. Activate
Acti veDocunent . O ose savechanges: =wdDoNot SaveChanges

If ans <> -1 Then
"if user cancelled, do nothing
Exit Sub
El se
"if user selected file, wite the settings

"wite list of files
"wite size of the |ist

System PrivateProfileString(SFN, "FileList", "ListSize") =
| st Fi | est oProcess. Li st Count

"wite |ist

For i = 0 To (IstFilestoProcess.ListCount - 1)

System PrivateProfileString(SFN, "FileList", "f" & Str(i * 2)) =
| stFil estoProcess. List(i, 1)
System PrivateProfileString(SFN, "FileList", "f" & Str(i * 2 + 1))

| st Fil estoProcess. List(i, 2)

Next i

"wite current directory

System PrivateProfileString(SFN, "CurDir", "CurDir") = _

I bl CurrentDirectory. Caption
"wite file fiter
System PrivateProfileString(SFN, "Preferences", "FileFilter") = _
crmbFil eFil ter. Val ue

"write whether Insert files as |inks

System PrivateProfileString(SFN, "Preferences", "Linkld")
cbLi nki d. Val ue

"write whether Insert header

System PrivateProfileString(SFN, "Preferences", "Headerld") =
cbHeadi d. Val ue

"wite title extension filter

System PrivateProfileString(SFN, "Preferences", "TitExt")
cnbTi t Ext . Val ue

"wite graph orientation preference

System PrivateProfileString(SFN, "Preferences", "GO') =
cnbG aphOri entation. Li st ndex

End If
End Sub

Private Sub cndSel Dir_dick()
" open word Dialog file open

if user selected OK, display the path and popul ate | stDirectorycontent
If Dial ogs(wdDi al ogFi | eOpen). Di splay <> 0 Then

I bl CurrentDirectory. Caption = CurbDir

"popul ate | stDirectoryContent

Call GetFilesAndDirs(lblCurrentDirectory. Caption, cnbFileFilter. Text)

End I f
End Sub

23

Private Sub cndSwitchid _Cick()

"check if user selected extension for graph titles
If ((Trim(cnbTitExt. Text) = "") O (TrimcnbTitExt. Text) = "*.*")) Then
MsgBox ("You nust specify extension of files with titles of graph")
El se
" di splay explanation
nsg = "Use this button only if" + Chr(13) + _
"files with graph titles have the sane nane as graph files but
di fferent extension"
nsg = nsg + Chr(13) + "and"
nsg = nsg + Chr(13) + "file titles immediately foll ow correspondi ng
graphs in the list"
"if user cancelled, do nothing
I f MsgBox(msg) = 2 Then Exit Sub
" otherwi se switch order of files and graphs

For i = 1 To (IstFilestoProcess.ListCount - 1)
potential GraphFile | stFilestoProcess.List(i - 1, 1)
pot enti al GraphPat h | stFil estoProcess.List(i - 1, 2)

potential TitleFile | stFil estoProcess. List(i, 1)

potential Titl ePath | stFil estoProcess. List(i, 2)

"separate file name and file extension

pgf nane = M d(potential GaphFile, 1, InStr(potential GaphFile

") - 1)

) - 1)
ptfext = Right$(Trimpotential TitleFile), 3)

©
—
—h
S
Q
3
1

Md(potential TitleFile, 1, InStr(potentialTitleFile,

If (UCase(ptfext) = UCase(M d(cnbTitExt. Text, 3, 3))) And _
(UCase(pgf nane) = UCase(ptfname)) Then
"if current fileis a graph title file,
" and file nane is the sanme as previous file,
" switch order with previous file

| stFilestoProcess.List(i - 1, 1) = potential TitleFile
| stFilestoProcess.List(i - 1, 2) = potential TitlePath
| stFilestoProcess.List(i, 1) = potential GaphFile
| stFil estoProcess.List(i, 2) = potential GaphPath
End If
Next
End If
End Sub

Private Sub cndUp_dick()
"check if file is selected and that it is not the first

i = IstFilestoProcess. Listlndex
If i >0 Then
"nove 2nd col um

sel file = IstFilestoProcess. List(i, 1)
prevfile = IstFilestoProcess.List(i - 1, 1)
| stFilestoProcess.List(i - 1, 1) = sel _file

| stFilestoProcess.List(i, 1) = prevfile
"nmove 3rd col um

sel file = IstFilestoProcess.List(i, 2)
prevfile = IstFilestoProcess.List(i - 1, 2)
| stFilestoProcess.List(i - 1, 2) = sel _file

| stFilestoProcess.List(i, 2) = prevfile
"keep focus on previous file
| stFil estoProcess. Listlndex =i - 1

24

End |f

End Sub

Private Sub CommandButtonl Cick()

nsg = "To inprove the efficiency of file processing, you can:" + Chr(13)
+ Chr(13)

neg = nsg + "1. Create files using filenanes that foll ow intended sort
order, i.e., Filel.rtf, File2.rf, File3.cgm File4.rtf" + Chr(13) +
Chr (13)

nsg = nsg + "2. Store titles of graphs in rtf of text files using the
same nane as correspondi ng graph but different extension" + Chr(13)
nsg = nsg + " title extension follow ng graph extension in

al phabetical order i.e., Sales.aaa (title) and Sal es.cgm (graph)" +
Chr(13) + Chr(13)

nsg = nsg + "3. Store all files that you want to insert into one
docunent in the same folder" + Chr(13) + Chr(13)

nsg = nsg + "4. Store your list of file if you think you may need to
reuse it" + Chr(13) + Chr(13)

nmsg = nsg + "5. If your files may need updating, insert themas |inks
and update |inks when need arises" + Chr(13) + Chr(13)

MsgBox pronpt:=nmsg, Title:="Tips for efficient file processing"

butt ons: =vbOKOnl y

End Sub

Private Sub CommandButton2 Cick()
"di splay About information

nsg = "Macro InsertAllFiles v. 2.0" + Chr(13)
nsg = nsg + "Copyright |za Peszek, Merck & Co., Inc., 1998" + Chr(13)
nsg = nsg + "All Rights Reserved"

MsgBox pronpt:=nmsg, Title:="About InsertAllFiles", buttons:=vbOKOnly
End Sub

Private Sub IstDirectoryContent Cick()
Lbl Thi sFi | eNane. Caption = | stDirectoryContent. Text
End Sub

Private Sub | stDirectoryContent Dbl Click(ByVal Cancel As
MSFor ns. Ret ur nBool ean)

Call cndAdd_dick

End Sub

Private Sub I stFilesToProcess_Cick()

"display file name and path in status bar

nsg = "file name: " +

| st Fil est oProcess. List(lstFilestoProcess. Listlndex, 1)
nsg = nsg + Chr(13)

nsg = nsg + "directory: " +

| st Fi | est oProcess. List(lstFil estoProcess. Listlndex, 2)
Lbl Thi sFi | eNane. Capti on = nsg

End Sub
Private Sub |stFilestoProcess Dbl dick(ByVval Cancel As
MSFor ns. Ret ur nBool ean)

Call cndRenove_Cick
End Sub

25

Private Sub UserFormlInitialize()

ext(0) = "* ="

ext(1l) = "*.doc"
ext(2) = "*.rtf"
ext(3) = "*. txt"

"list nore extensions if you w sh

define extensions for files with graph titles

titext(0) = "*.tit"
titext(1) = "*.ttl"
titext(2) = "*.*" "add your extensions

"list nore title extensions if you w sh

currentPath = CurDir
current Ext = "* *"
currentTitExt = "*. ttl"

"display current path in label IblCurrentDirectory in the form
I bl CurrentDirectory. Caption = currentPath

"populate formcontrols: list of drives, list of file extensions
" and list of extensions for graph titles with preset val ues
cnbFileFilter.List() = ext

cmbFil eFilter. Text = current Ext

cnbTitExt. List() = titext

cbTi t Ext. Text = currentTit Ext

" popul ate directory content

Call GetFil esAndDirs(currentPath, currentExt)

" display options for Graph orientation

cnbG aphOri entati on. Col utmCount = 2

cnbG aphOrientation. Addltem "Portrait"

cnbG aphOrientation.List(0, 1) =0

cnbG aphOri entati on. Addl tem " Landscape”

cnbG aphOrientation.List(1, 1) =1

cnbG aphOri ent ati on. BoundCol utm = 2

cnbG aphOientation. Style = fntyl eDr opDownLi st
cnbG aphOrientation. Listlndex = 0

"End Wth

End Sub

" The code for InsertAllFile macro

" (the part of nmacro that runs after user closes the form.
" Copyright Iza Peszek, Merck & Co. Inc., 1998

" Al Rights Reserved.

Dmi As Integer, tnp As Integer, sizeOList As |Integer

Dim ContOrient As Integer, ContPWAs Integer, ContPH As | nteger
Dim NFOrient As Integer, NFPWAs |Integer, NFPH As |nteger
Dmtitleext As String, Fullname As String
Dimfileextension As String

Dim ContFile As Ohject

Dim prevFile wasTitl e As Bool ean

26

Public Sub InsertAlFiles()
"display form
frmnsert All Fil es. Show

" determ ne the extension of graph titles
If Len(frmnsertAllFiles.cnbTitExt. Text) < 3 Then
titleext =" "
El se
titleext = LCase(Ri ght$(frmnsertAllFiles.cnbTitExt. Text, 3))
End If
"open new file and assign a name so we can refer to it
Set ContFile = Application. Docunents. Add

"insert files fromthe |i st

prevFile wasTitle = Fal se
"used to renenber if previously inserted file was a title of a graph
sizeOFList = frmnsertAllFiles.|stFilestoProcess.ListCount - 1

For i = 0 To sizeCOfLi st

"display nmessage in the status bar show ng progress
StatusBar = "Processing file " & Str(i + 1) &" of " & Str(sizeOList +
1)

" create full names of files (with path)
If Right$(frmnsertAllFiles.|IstFilestoProcess.List(i, 2), 1) <> "\"
Then
Ful I name = frmnsertAll Files.|stFilestoProcess. List(i, 2) _
& "\" & frmnsertAllFiles.|stFilestoProcess.List(i, 1)
El se
Ful I name = frmnsertAll Files.|stFilestoProcess.List(i, 2) _
& frmnsertAllFiles.|IstFilestoProcess.List(i, 1)
End If

" determine the orientation of the |last section of the container file
ContFile.Activate
ContOrient = ContFile. Sections. Last.PageSetup. Orientation
Cont PH = Cont Fi |l e. Secti ons. Last . PageSet up. PageHei ght
Cont PW = Cont Fi |l e. Secti ons. Last. PageSet up. PageW dt h
" determine if file exist
If Dir(Fullnane) = "" Then

"if no such file exists, insert page break

"and the statenment "file Full Nane was not found"

ContFile. Activate

If i >0 Then Call Insert PB at ECF

Sel ection. EndKey Unit:=wdStory

Sel ection. I nsertAfter "file " & Fullnane & " was not found"

Sel ection. Col | apse Direction: =wdCol | apseEnd

El se

" if file exists
" determ ne what kind of break is needed and insert break if needed
" then insert file

" determine file extension
fileextension =
LCase(Ri ght$(frmnsertAl |l Files.|stFilestoProcess.List(i, 1), 3))

Sel ect Case fil eextension

27

Case "cgni, "tif", "jpg", "wif", "bmp", "gif"
" check if previous file was a graph title
if so, insert paragraph
if not, check if last section has orientation specified for

gr aphs
" if so, insert page break
" if not, insert section break and apply appropriate
orientation
ContFile.Activate
If prevFile wasTitle Then
Wth Selection
. EndKey Unit:=wdStory
. I nsertParagraphAfter
. Col | apse Direction: =wdCol | apseEnd
End Wth
El se
If ContOrient =
frmnsertAll Files.cnbG aphOrientation. Val ue Then
If i >0 Then Call Insert PB at EOF 'insert page break
El se
tnp = frmnsertAl Il Files.cnbG aphOrientation. Val ue
Call Insert_SB at ECF(wbPortrait, tnp * 612 + (1 - tnp)
* 792, tnp * 792 + (1 - tnp) * 612, i)
End If
End If

Case titleext
ContFile.Activate
" check if last section was portrait
" if so, insert page break
" if not, insert section break and apply portrait orientation
If ContOrient = wbPortrait Then
If i >0 Then Call Insert PB at EOF
El se
Call Insert_SB at EOF(wbPortrait, 792, 612, i)
End If
prevFile wasTitle = True
" remenber that this file was graph title
Case "doc", "rtf", "txt"
"determ ne page orientation and page size of first section of
this file
" if sane as last section of the container, insert page break
" if different, insert section break and apply settings

Docunents. Open Fi |l eNane: =Ful | nane, ReadOnly: =True
Wth ActiveDocunent. Sections. First. PageSet up
NFOrient = .Orientation
NFPH = . PageHei ght
NFPW = . PageW dt h
End Wth
Act i veDocunent . Cl ose

ContFile.Activate
If ((ContOrient = NFOient) And (ContPH = NFPH) And (Cont PW =
NFPW) Then
If i >0 Then Call Insert_ PB at EOF
El se

28

Call Insert_SB at ECOF(NFOrient, NFPH, NFPW i)
End If

Case El se

"insert page break and print warning nessage and skip file
insertion

ContFile.Activate

If i >0 Then Call Insert_ PB at ECF

Sel ecti on. EndKey Unit:=wdStory

Sel ection. I nsertAfter "I do not know what to do with file " &
Ful | nane
Sel ection. Col | apse Direction: =wdCol | apseEnd
End Sel ect

"move to the end of container file
ContFile.Activate
Wth Selection
. EndKey Unit:=wdStory
"insert header with file name if user requested it
If frmnsertAll Files.cbHeadi d. Val ue = True Then
.InsertAfter Full nanme
. EndKey Unit:=wdStory
. I nsert ParagraphAfter
End If
. Col | apse Direction:=wdCol | apseEnd
. EndKey Unit:=wdStory
. Col | apse Direction:=wdCol | apseEnd
End Wth
"insert file : docunents as insert file, graphs as insert picture
Sel ect Case fil eextension
Case "cgnt, "tif", "jpg", "wrf", "bnp", "gif"
"insert graphs
Acti veDocunent. | nl i neShapes. AddPi cture _
Fi | eName: =Ful | nane,
linktofile:=frmnsertAllFiles.cbLinkid.Value, _
Range: =Sel ecti on. Range, savew t hdocunent: =Tr ue
Sel ection. EndKey Unit:=wdStory
Sel ection. Col | apse Direction: =wdCol | apseEnd
Case "doc", "rtf", "txt", titleext
"insert recogni zed docunents and graph titles
Sel ection.InsertFile FileNane: =Ful | name, _
link:=frm nsertAllFiles.cbLinkid. Val ue
Sel ection. Col | apse Direction: =wdCol | apseEnd
Case El se
" do nothing with other files
End Sel ect

End If

Next
End Sub
Private Sub Insert_ PB at EO()
" inserts page break at the end of active docunent
Wth Sel ection
. EndKey Unit:=wdStory
. Col | apse Direction:=wdCol | apseEnd
. Range. | nsert Break Type: =wdPageBr eak
. Col | apse Direction:=wdCol | apseEnd

29

End Wth
End Sub
Private Sub Insert_ SB at EOF(PageOrient, PageHt, PageWit, SectBreak As
I nt eger)
" inserts Section break at the end of active docunent if SectBreak>0
appl i es specified settings
Di m NewSection As (Obj ect
If SectBreak > 0 Then
Set NewSection = ActiveDocunment. Secti ons. Add
El se
Set NewSection = ActiveDocument. Secti ons. Last
End If

Wth NewSecti on. PageSet up
.Oientation = PageOri ent
. PageHei ght = PageHt
. PageW dt h = PageWt

End Wth

Set NewSection = Nothing

End Sub

Appendix C.2 - Template Text for Word 97

Toinstall: Click on the button below to install the macro InsertAllFiles.

| nstall “

To view macro code:

» Click on Tools/Macro/Visual Basic Editor.

» Double-click on the object frminsertAllFiles (located in the folder Forms in Project window) to
displays the form.

» Double-click anywhere on the form to view the form code.

* Double-click the module InsertAllFiles (located in the folder Modules in Project window) to view code
for the part of the macro that processes the list after the form is closed.

Troubleshooting:
If setup fails, read the notes below.

Note: Macros must not be disabled when opening this file

Setup will copy the module InsertAllFiles and the form frminsertAllFilesto NORMAL.DOT template. If
your NORMAL.DOT template already has objects with these names, the setup will fail.

30

In such a case, do the following:

e Click on Tools/Macro/Organizer

* Make sure that the macrosin NORMAL.DOT arevisible.

* Look for an object named InsertAllFiles in the NORMAL.DOT window.

e If such an objects exists, rename “InsertAllFiles” objects in INSTR.DOT template window.
* Repeat these steps with the InsertAllFiles object.

e Close the Organizer window.

e Click on the installation button again.

Appendix D - Macro I nsertAllFilesfor Word 6.0/95
Appendix D.1 - Macro Code

Code for the InsertAllFiles nacro for Wrd 6.0/95.
Copyright Merck & Co., 1996.
Al Rights Reserved.

Di m Shared |l ogdir$

Dim Shared titext$

Di m Shared Ml i st $(0)

Di m Shared |istsize

Di m Shared |inkid, headid

Sub MAI N

" change directory to the one used last tine

On Error Goto init

startdir$ =\
GetPrivateProfileString$("InsertAllFiles", "startdir$",

"c:\wi ndows\ wrdmacro.ini")

Got o endinit

init:

startdir$ = Files$(".")

endinit:

On Error Resume Next

ChDir startdir$

On Error Goto O

Di m subdi rs$(0)
Dimfilelist$(0)
Di m Li st of Fi | es$(0)

" list all drives that you may use here,

' adjust dinmension of drives$ if necessary
Dimdrives$(4)
drives$(0) "
drives$(1)
drives$(2)
drives$(3)

" list all file extensions that you may need here,
" adjust dinension of ext$ if necessary

Di m ext $(3)
ext$(0) = "x. *"
ext$(1) = "*.doc"
ext$(2) = "*.rtf"

31

ext$(3) = "*.txt"

define extensions for files with graph titles
Dimtitext$(2)

titext$(0) = "*, *"

titext$(1) = "*.tit"

titext$(2) = "*.ttl"

" initialize variabl es

linkid =0

headid = 0

dobreak = 0

" fill subdirs$ with subdirectories of current one

and filelist with files (pattern=ext$) of current directory
GetFil esAndDirs subdirs$(), filelist$(), ext$(0)

define a dialog box for user interface

Begin Dial og UserDi al og 964, 440, "Pick Files to Insert", .DrlList
Text 10, 22, 100, 13, "Directories:", .dirtxt
Text 207, 22, 100, 13, "Files:", .filtxt

Text 10, 8, 371, 13, dirstring$, .nydir

Li st Box 10, 41, 197, 207, subdirs$(), .dir_id

Li st Box 207, 41, 150, 207, filelist$(), .myfiles
Text 10, 284, 80, 13, "Drive:", .dr

Dr opLi st Box 10, 300, 88, 110, drives$(), .nydrives
Li st Box 498, 40, 452, 328, ListofFiles$(), .Mlist
Text 207, 284, 100, 13, "File Types", .ft

ConboBox 207, 300, 110, 92, ext$(), .FileTypes

Text 350, 274, 150, 25, "Extention of files with G aphTitless:",
. Text1
ConboBox 367, 300, 110, 92, titext$(), .titext
CheckBox 7, 396, 188, 16, "Insert Files as LINKS", .linkid
CheckBox 7, 415, 388, 16, "Insert headers with file path", \
. headi d
PushButton 520, 380, 288, 21, "Swith Order of Graphs/Titles", \
.Swi tchid
PushButton 368, 39, 121, 21, "Add All", .AddA
PushButton 368, 225, 121, 21, "Renpbve Al |", .RenoveAl

PushButton 368, 75, 121, 21, "Add", .Add
PushButton 368, 109, 121, 19, "Up", .Up
PushButton 368, 139, 121, 21, "Down", . Down
PushButton 368, 175, 121, 21, "Renove", . Renove
OKBut t on 864, 380, 88, 21

Cancel Button 860, 13, 88, 21

End Di al og

di spl ay di al og
m nydl g As UserDi al og

D
Get Cur Val ues nydl g
x = Dial og(nydl g)

after dialog closes, store user selected settings inthe IN file
SetPrivateProfileString "lInsertAllFiles", "startdir$", Files$("."),
"wrdmacro.ini"

start processing the list

open a new file to hold all files fromthe |ist

32

\

\

Fi | eNewDef aul t
fileout$ = W ndowNane$()

For i =0 To listsize - 1
nane$ = nonun®(nylist$(i))
ext$ = LCase$(Ri ght $(nane$, 3))
Sel ect Case ext$
Case "doc", "rtf", "txt", "DOC', "RTF", "TXT"
On Error Goto Warning
word, rtf and text docunents are inserted using InsertFile
with their orientation preserved
Fi |l epen . Nane = nane$
Dimdl g As Fil ePageSet up
Get Cur Val ues dl g
orient = dlg.Oientation
FileC ose 2
Activate fileout$
EndCOf Docunent
Dimdlg As Fil ePageSet up
Get Cur Val ues dl g
oldorient = dlg.Oientation
if necessary, insert section breaks to allow for both
| andscape and portrait orientation in one file
If oldorient <> orient Then
If i >0 Then InsertBreak . Type = 2
EndCOf Document
Sel ect Case orient
apply original orientation of the selected file

Case 1
Fi |l ePageSetup .Orientation = 1
. Appl yPropsTo = 0, \
. PageWwdth = "11 in",
. PageHeight = "8.5 in"
Case O
Fi | ePageSetup . Orientation = 0,
. Appl yPropsTo = 0, \
. Pagewdth = "8.5 in",
. PageHei ght = "11 in"
End Sel ect
El se
If i >0 Then InsertBreak . Type = 0
End |f

insert file nanme before the file itself
" if user requested to do so

If headid = 1 Then I nsert nane$
I nsert Par a
" insert file as copy or as link according to user request
InsertFile .Name = name$, .Link = linkid
dobreak = 0

Coto getfile
Case "cgni', "Cau
On Error Goto Warning
Activate fileout$
EndCOf Documnent
Dimdl g As Fil ePageSet up
Get Cur Val ues dl g
oldorient = dlg.Oientation
graphs will be inserted in pages oriented as portrait
If oldorient <> 0 Then
" if previous file was | andscaped, insert section break

33

and apply portrait orientation
If (i >0 And dobreak <> - 1) Then InsertBreak

. Type = 2
EndCOf Document
Fi |l ePageSetup .Orientation = 0, . ApplyPropsTo =
0, \
.PageWdth = "8.5 in", .PageHeight =
"11 in"
El se
If (i > 0 And dobreak <> - 1) Then InsertBreak
.Type = 0
End |f
dobreak = 0

insert file name before the file itself
" if user requested to do so
If headid = 1 Then Insert nane$
I nsert Para
insert graphic file as copy or as link
" according to user request
InsertPicture . Name = name$, .LinkToFile =2 * linkid
Coto getfile
Case titext$
" files holding titles graphs will be inserted in portrait
pages with no page break after title
On Error Goto Warning
Activate fileout$
EndCOf Documnent
Dimdl g As Fil ePageSet up
Get Cur Val ues dl g
oldorient = dlg.Oientation
if previous file was | andscaped, insert section break and
apply portrait orientation
If oldorient <> 0 Then
If (i > 0 And dobreak <> - 1) Then InsertBreak

. Type = 2
EndCOf Document
Fi | ePageSetup .Orientation = 0, . ApplyPropsTo =
0, \
.PageWdth = "8.5 in", .PageHeight =
"11 in"
El se
If (i > 0 And dobreak <> - 1) Then I nsertBreak
.Type = 0
End |f
dobreak = - 1
If headid = 1 Then Insert nane$
I nsert Para
" insert file as copy or as link according to user request
InsertFile . Name = nane$, .Link = Ilinkid
Coto getfile
Case El se
End Sel ect
getfile:
Next
Got o bye

warn user if requested file does not exist
Wr ni ng
Activate fileout$
Insert "File " + name$ + " Does Not Exist"
I nsert PageBr eak

On Error Goto O

Goto getfile
Bye:
End Sub

function to list all files with specified extension in a directory
i nput paraneters: directory name, nane of array to hold list files,
extension of files

Sub GetFil esAndDirs(subdirs$(), filelist$(), ext$)
Redi m subdi rs$(Count Di rectories())
subdirs$(0) ="[..]"
For x = 1 To CountDirectories()
subdi rs$(x) = LCase$(CetDirectory$(x))
Next
count =1
a$ = Files$(ext$) 'first file in current directory
While Files$() <> ""
count = count + 1
vend
Redimfilelist$(count - 1)
If Files$(ext$) <> "" Then
filelist$(0) = LCase$(Fil eNanel nfo$(Files$(ext$), 3))
filename of the first file
For x = 1 To count - 1
filelist$(x) = LCase$(FileNanelnfo$(Files$(), 3))
Next
End If
If CountDirectories() > 0 Then SortArray subdirs$()
If count > 1 Then SortArray filelist$()
End Sub

function used to work with dial og box
Function DirList(id$, action, wal ue)
Sel ect Case action
Case 1 ' The dialog box is displayed
Dl gval ue "Fil eTypes", 0
print the path of the current directory
in the provided text box Mydir
If Right$(Files$("."), 1) = "\" Then
D gText "nydir", Files$(".")
El se
D gText "nydir", Files$(".") + "\"
End If
Sel ect Case LCase$(Left$(Files$("."), 3))
popul ate listbox nmydrives with preset drive letters

Case "c:\"

Dl gval ue "nydrives", 0
Case "e:\"

Dl gval ue "nydrives", 1
Case "q:\"

Dl gval ue "nydrives", 2
Case "u:\"

Dl gval ue "nydrives", 3
Case El se
End Sel ect
listsize = 0

Case 2 " The user selects a contro

Sel ect Case id$
Case "nydrives"
user clicks on drive or directory and all files in this

35

directory with specified extension are displayed
ChDir DI gText $("nydrives")
Di splayDir("mydrives", "dir_id", "nyfiles", "nydir", "FileTypes")

DirList =1
Case "X"
Sel ect Case Dl gFocus$()
Case "X"

user clicked on OK button : store settings
and list of files and exit dial og box
logdir$ = DigText$("nmydir")
l'inkid Dl gVal ue("Ili nki d")
headi d Dl gVal ue(" headi d")
titext$ = Right$(D gText$("titext"), 3)
Case "Fil eTypes"
user requested that only specified file extensions will be
listed: update display
di splayDir("nydrives", "dir_id", "nmyfiles", "nydir",
"Fil eTypes")

DirList =1
Case "dir_id"
user double clicked on the directory: update display
ChangeDir("dir_id", "mydir")
di splayDir("nydrives", "dir_id", "nyfiles", "nydir",
"Fil eTypes")
DirList =1
Case "nyfiles"
user double-clicked on file nane: add file to the |ist
right below highlighted file
newfile$ = DigText$("nmydir") +
Dl gText $("nmyfil es")
D gVal ue("Mlist")

selid =
tnplist$(listsize)
i

Dim
I

f stsize > 0 Then
For i = 0 To selid
tnplist$(i) = NoNun®(Mylist$(i))
Next
tnplist$(selid + 1) = newfile$
For i = selid + 2 To listsize
tplist$(i) = Nonunb(Mlist$(i -
1))
Next
El se
tnplist$(listsize) = newfile$
selid = -1
End If

Redi m Myl i st $(1i stsize)
For i =0 To listsize
MylistB(i) = MSS(i + 1) + tnplist$(i)
Next
Dl gLi st BoxArray "Mylist", Mlist$()
Dl gvalue "Mylist", selid + 1

listsize = listsize + 1
DirList =1

Case El se

End Sel ect

Case "linkid"
user selected option that files are inserted as |inks :
store this info
dirlist =1
Case "headi d"

36

user

requested that file name will be inserted below the file:
store this info

dirlist =1
Case "AddAl "
user requested that all listed files are added to the list: do so

addl i st$(i -

si zet oadd -

si zet oadd -

addl i st $(i)

selid = Digvalue("Mlist")
si zetoadd = Dl gLi stBoxArray("nyfiles")
Di m addl i st $(si zetoadd - 1)
size2 = DigListBoxArray("nyfiles", addlist$())
If addlist$(0) <> "" Then
Dmtnplist$(listsize + sizetoadd - 1)
If listsize > 0 Then

For i =0 To selid

tnplist$(i) = NonunS(Mylist$(i))

Next
For i = selid + 1 To selid + sizetoadd
tplist$(i) =\
Dl gText$("nydir") +
selid - 1)
Next
For i = selid + sizetoadd + 1 To listsize +
1
tnplist$(i) = Nonun®S(Mylist$(i -
1))
Next
selid = selid + sizetoadd
El se
For i = 0 To sizetoadd - 1
tnplist$(i) = DigText$("nmydir") +
Next
selid = sizetoadd - 1
End If
listsize = listsize + sizetoadd
Redim Myl i st$(listsize - 1)
For i =0 To listsize - 1
Mlist$S(i) = MBS(i + 1) + tnplist$(i)
Next

Dl gLi st BoxArray "Mylist", Mlist$()
Dl gvalue "Wylist", selid

End |f

DirList =1

Case "RenoveAll"

user requested that all files are renoved fromthe list: do so
Redi m Myl i st $(0)
Dl gLi st BoxArray "Mylist", Mlist$()
listsize = 0
Dl gvalue "Mylist", - 1
DirList =1
Case " Add"
user requested that selected file is added to the list : do so

newfile$ = DigText$("mydir") + DI gText$("nyfiles")
selid = DigVvalue("Mlist")
selid2 = Digval ue("nyfiles")
If selid2 > - 1 Then
sizefiles = Dl gListBoxArray("nmyfiles") - 1
Dmtnplist$(listsize)
If listsize > 0 Then
For i =0 To selid
tplist$(i) = Nonun(Mlist$(i))
Next

37

tnplist$(selid + 1) = newfile$
For i = selid + 2 To |istsize
tnplist$(i) = NonunB(Mylist$(i - 1))

Next

El se
tmplist$(listsize) = newfile$
selid = - 1

End If

Redi m Myl'i st $(1i stsize)
For i = 0 To |listsize

Mlist$S(i) = MBS(i + 1) + tnplist$(i)
Next

Dl gLi st BoxArray "Mylist", Mlist$()
Digvalue "Mylist", selid + 1
listsize = listsize + 1
If selid2 < sizefiles Then
Dl gval ue "nyfiles", selid2 + 1

El se
Dl gval ue "nyfiles", - 1
End If
End If
DirList =1

Case " Renove"
user requested that selected file is renoved fromthe |ist:
do so
selid = DigVvalue("Mlist")
listsize = listsize - 1
If listsize > 0 Then
Dmtnplist$(listsize - 1)
For i =0 To selid - 1
tplist$(i) = Nonun®(Mylist$(i))

Next
For i = selid To listsize - 1

tnplist$(i) = NonunB(Mylist$(i + 1))
Next

Redim Myl i st$(listsize - 1)
For i =0 To listsize - 1
Mlist$(i) = MSS(i + 1) + tnplist$(i)
Next
El se
Redi m Myl i st $(0)
End |f
Dl gLi st BoxArray "Mylist", Mlist$()
If selid < listsize Then Digvalue "MWlist", selid
dirlist =1
Case " Up"
as user requested, nove selected file one position up on the |ist
selid = DigValue("Mlist")
If selid > 0 Then
tmpl$ = NonunB(Mlist$(selid))
tmp2$ = Nonunt(Myl ist$(selid - 1))
M/list$(selid) = MS$(selid + 1) + tnmp2$
Mylist$(selid - 1) = MS$(selid) + tnpl$
Dl gLi st BoxArray "Mylist", Mlist$()
Dl gvalue "Mylist", selid - 1

End If
dirlist =1
Case " Down"

as user requested, nmove selected file
one position down on the |ist

38

selid = DigVvalue("Mlist")
If selid < listsize - 1 Then
t mpl$ = Nonun®(Mlist$(selid))
tmp2$ = NonunB(Mlist$(selid + 1))
Mlist$(selid) = MS$(selid + 1) + tnmp2$
Mlist$(selid + 1) = MS$(selid + 2) + tnpl$
Dl gLi st BoxArray "Mylist", Mlist$()
Dl gvalue "Mylist", selid + 1
End |f
dirlist =1
If title extension is specified then rearrange the Ii st
so titles of graphs are listed before graphs
Case "Switchid"
For i =1 To listsize - 1
nane$ = nonunB(nylist$(i))
ext$ = LCase$(Ri ght $(nylist$(i 3))
full$ = nonun(LCase$(LeftS(nmylist$(i), InStr(nylist$(

H : , n . n - 1
pfull$ =\) :)
nonun(LCase$(Left $(nylist$(i - 1), InStr(nylist$(i - 1), ".") - 1)))

If (ext$ = Right$(D gText$("titext"), 3) And full$ = pfull$) Then
prevd = nylist$(i - 1)
curr$ = nmylist$(i)
nylist$(i - 1) =curr$
nylist$(i) = prev$

End If
Next
Dl gLi st BoxArray "Mylist", Mlist$()
Dirlist =1
Case El se
End Sel ect
Case 3

Sel ect Case id$
Case "Fil eTypes"
di splayDir ("nydrives", "dir_id", "nmyfiles", "nydir", "FileTypes")

dirlist =1
Case "titext"
dirlist =1
Case El se
dirlist =1
End Sel ect
Case El se
End Sel ect

End Functi on

Sub ChangeDir(dir$, |abel$)
" function that changes current directory to the sel ected one
first argunent is a subdirectory nane,
second argument is the current directory
If DigText$(dir$) <> "[..]" Then
ChDir DI gText $(I abel $) + DI gText $(dir$)
full path=current dir + subdir
El se
user clicked on [] to (parent directory)
tnmp = Len(Dl gText $(| abel $))
If tnmp > 3 Then
parent directory is not root, so strip backslash fromthe path
to parent directory
ChDir Md$(D gText$(l abel $), 1, tnmp - 1)
tmp$ = Files$(".")
Chbir ".."

39

End If
End If
End Sub

Sub displayDir(drive$, dir$, file$, |abel$, type$)
function to populate the Iabel with current directory and |istboxes
with subdirectory list and with file |ist
Di m subdirs$(0)
Dimfilelist$(0)
Wit Cursor 1
Get Fil esAndDirs subdirs$(), filelist$(), D gText$(type$)
Dl gLi st BoxArray dir$, subdirs$()
Dl gLi stBoxArray file$, filelist$()
Wi t Cursor 0O
dirstring$ = LCase$(Files$("."))
If Right$(dirstring$, 1) <> "\" Then dirstring$ = dirstring$ +
II\II
Dl gText$ | abel $, dirstring$
End Sub

Functi on MS$(nunber)
" function that formats nunmbers in the file |ist
I f nunber < 10 Then

tnmp$ =" " + Str$(nunber) + "> "
El se

tmp$ = Str$(nunber) + "> "
End | f
MS$ = tmp$

End Functi on

Functi on NoNun(wor d$)

function that strips the nunbers fromthe file Iist
pos = InStr(word$, ">")
tmp$ = M d$(word$, pos + 2, Len(word$) - pos + 1)
NoNunts = tmp$
End Function

Appendix D.2 - Template Text for Word 6.0/95

Note: Do not install this macro if you are using Office 97.
To install the macro InstallAllFiles, click on the Install macro InsertAllFiles” button on the toolbar above.

To view macro code:

¢ Click on Tools/Macro.
¢ Select the macro InstallAllFiles from the list.
¢ Click on the Edit button.

Questions and comments should be directed to:
Iza Peszek, PhD.
Merck & Co., Inc.
P. O. Box 2000, RY33-404
Rahway, NJ 07065-0900
E-mail: peszeks@erols.com

Modified code is not supported by the authors or SAS Institute.

40

SAS" is a registered trademark or trademark of SAS Institute Inc. in the USA and other countries. OS/2 is a registered trademark of
International Business Machines Corporation, Inc. 0 indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.
Reprinted with permission from Observations(. This article, number obswww13, is found at the following URL: www.sas.com/obs

01998 SAS Institute Inc.

41

