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Abstract

Because of the increasing popularity of the SAS® System to create Graphical User Interfaces (GUIs),
many have come to believe that the language used with SAS/AF® and SAS/FSP®, called Screen Control
Language (SCL), may only be used with visual objects. The truth is that SCL can be used in conjunction
with or in place of the SAS macro language to automate SAS batch programs and to better interface them
with the computing environment. Specifically, SCL programs may be submitted from within batch
programs run on MVS and UNIX host computers. This includes even those host computers on which
SAS/AF is not installed!
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Introduction

This article is an introduction to the subset of SCL that may be used for nonvisual programming
applications. Topics covered include:

» why SCL code is often a better language choice than DATA steps and macros
e when to use SCL entries instead of DATA steps or macros

» interfacing SCL entries with SAS code executed in batch

* how to use the SCL online reference materials

» using SCL to get the properties of the operating environment

» controlling the execution of SCL code.

No previous knowledge of SAS/AF or SCL is presumed. Part of the article is devoted to using the SCL
debugger to learn how SCL programs work and debug those that do not work.

What Is SCL?

The acronym SCL is an abbreviation of Screen Control Language, which is a programming language
available when SAS/AF (application facility) or SAS/FSP (full-screen product) is licensed. The
identification of this programming language as Screen Control Language is unfortunate in that it implies
that SCL must be used with an interactive visual component.

With the advent of FRAME catalog entries, it is possible, if not usually practical, to build SAS/AF
applications without using SCL program code. Similarly, it is possible and very practical to build SCL
programs that have no visual component. Such programs can be used in situations where it is not
desirable or possible for a user to respond to screen items, such as in production processes run in batch.

Advantages and Disadvantages to Using SCL

SCL offers advantages when compared to its alternatives, such as the macro language. These
advantages, which are elaborated on, include:

« fewer ampersands and no percent signs lead to less cryptic coding
e variable names may be up to 32 characters long

» availability of an excellent debugger

» rich set of functions, thoroughly interfaced with the operating system
» ability to use SCL lists to store values

« ability to hide executed program code from the application user.



However, there are at least two significant disadvantages to SCL when compared to the macro language.
First, the macro language is available to every SAS user. To create an SCL program, SAS/AF must be
licensed and installed on the computer on which development is to take place. While SAS Institute often
includes SAS/AF in attractively priced bundles of SAS System products, SAS/AF is not universally
licensed on all computers on which SAS programs are used.

However, the compiled SCL programs do not require SAS/AF to be executed. Thus, they may be ported
and used on any computer on which the base SAS software has been installed. In addition to the obvious
potential license cost savings, the cross-platform portability of SCL frees developers to create SAS
programs on computers where interactive program development is supported and encouraged. The
compiled programs can be ported and executed on computer systems where interactive SAS sessions are
not possible or discouraged.

Second, unlike the macro language, SCL variables are resolved at compile time during a single pass of
the SCL compiler. This is in contrast to macro variables, which are resolved recursively by the macro
processor. The macro processor will make as many passes as may be required to resolve any symbols
before the program is compiled and executed.

Because the timing of when symbols are resolved is deeply embedded within the SAS System, it is likely
that the inability to resolve the names of SCL variables after compilation will persist. In situations where
symbols must be resolved when a program is run, the use of macro variables and perhaps even macro
language programs will be still be required.

The remainder of this article explores these concepts further through seven structured examples.
Creating Your First SCL Program

Let us begin exploring the nonvisual uses of SCL by creating our first program, example one,
EXMPLO001.SCL. For this purpose, we need access to a computer on which SAS/AF has been installed.
We also must be able to run the SAS System interactively through Display Manager. This last requirement
is because it is not currently possible to create an SCL catalog entry through batch execution.

Catalogs are a type of file created by the SAS System, in which one may store various types of information
as catalog entries. To begin using SCL for nonvisual applications, we need only concern ourselves with
one type of entry, the SCL entry.

This article illustrates the creation and editing of SCL programs under Windows 95 using Release 6.12 of
the SAS System. However, users should be able to replicate these activities on any computer and
operating system that allows the user to run SAS/AF interactively. Nuances of the SAS System peculiar to
a particular operating system are covered in the SAS Companion manuals. If online help is available,
these nuances also appear in the Table of Contents section, also titled "SAS Companion for ...".

It is a good idea to dedicate a separate directory and libref to the examples to be created as part of this
article. To do this, start by selecting the Libraries icon on the Program window toolbar, shown in Figure 1.
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This icon appears in the upper-right portion of the SAS Display Manager screen. After selecting this icon,
the Libraries window shown in Figure 2 should appear.
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Selecting the New Library push button brings up the window shown in Figure 3.
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Assign the libref scldemo to the directory c:\scldemo. Because this directory did not exist previously, the
window shown in Figure 4 appears after selecting Assign.
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Select the Yes button to create the directory and close the window.

The next step is to open the Build window. From the pull-down menu, select Globals, then Develop, and
then Application builder. The Build window appears, as shown in Figure 5.
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In the area labeled Libraries, select SCLDEMO. If there were any SAS catalogs in the SCLDEMO libref,
they would appear after the SCLDEMO libref was selected. Create a new catalog, MYPGMS, by clicking
on the right mouse button to bring up a menu. Select File, then New, and then Catalog. The window
shown in Figure 6 appears next.
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Enter mypgms as shown in Figure 6 and select OK. At the bottom of the Build window, you will see
"NOTE: Catalog SCLDEMO.MYPGMS created", which confirms that the MYPGMS catalog was created.
For the truly skeptical, select the Windows Start button, then Find, and look for Files or Folders, where you
will find mypgms in the c:\scldemo directory. If you select mypgms with the mouse and then click on the
right mouse button, properties similar to those shown in Figure 7 will appear.
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Note that SAS catalogs under Windows (and OS/2) use the .SC2 file extension.

Continuing forward, create the SCL entry for our first program. Refer to Figure 5 again. After verifying that
SCLDEMO library and MYPGMS catalog are still highlighted, move the mouse cursor and click on the
right mouse button. Select File, then New, then Entry. The BUILD: New entry window, shown in Figure 8,
appears.
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In the text entry field labeled Entry name, type EXMPLO01. Then click the left mouse button on the down
arrow. Select the SCL entry type. Select OK to create the new entry. The Source window shown in Figure
9 appears.
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As shown in Figure 9, we have typed in our first SCL program in the Build window. Note the INIT section
label. To change the color of program code text, select the code (highlight) as a block of text, and enter
the COLOR MTEXT <color> command in the command bar. You can color section labels to improve
readability.



Section labels are similar to labels used in SAS DATA steps and in other programming languages. When
statements that can cause the SAS System to execute statements out of sequence are used, such as the
GOTO statement, labels are used to point to the section of the program to be executed next. The
boundary of a section is denoted with a RETURN statement.

It is good practice to place all SCL code within labeled sections. While some SCL statements may work
outside of a labeled section, executable statements will not. This should not be surprising. How would the
SAS System know when to execute a freestanding SCL statement?

When constructing SCL programs for visual applications, there are several statement labels whose use
denotes when the SCL code within that section should be executed. However, this situation is greatly
simplified when coding SCL for nonvisual applications. We can place all our code within the INIT section,
which the SAS System runs once when the SCL entry is opened for execution. Additional labeled sections
may be used when needed to clarify branching or when LINK or GOTO statements are used.

Before we can execute our new SCL program, we have to compile it. Compilation means that English-like
or "high-level" program statements are translated into machine code or pseudocode, depending upon the
computer language and environment being used. Ordinary SAS code is compiled immediately after it is
submitted to the SAS System for execution (unless using the Stored Program Facility).

However, with SCL programs, we compile them once, and from then on, run the program without having
to recompile them. This feature of SCL offers a second important advantage. By compiling from the
Program Editor with the NOSOURCE option, we can distribute the compiled program only and keep the
source SCL secret. For those who sell their SAS programs, this is a very important feature of SCL.

To compile an SCL program, type the command COMPILE or select the Compile icon,
| @l ﬁl * | which is the middle icon shown in Figure 10. The icon on the left toggles debug mode on
———— oroff. Theicon on the rightinvokes TESTAF. The debug mode and the TESTAF
Figure 10 command will be covered in a later section.

Move the mouse off the Compile icon, and you see the message shown at the bottom of Figure 9:

NOTE: Code generated for EXMPLO0O1.SCL. Code size=332

This means that our program was compiled successfully. If it had failed to compile, or if there were
warnings, we would consult the Message window to learn the details. Open the Message window by
entering the MSG command or by selecting the Message icon (if available).

In the interests of good housekeeping, change the description of the EXMPL001.SCL catalog entry to
something a bit more descriptive. While still in the Build window, select the EXMPL0O01.SCL entry with the
mouse and then right-click to bring up a menu. Select File and then Rename. This will bring up the
Rename window shown in Figure 11.
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Select the entry description and type in the highlighted area a more meaningful description similar to the
one shown. Then select the OK button to return to the Build window. Close the Build window. To run the
program, type and submit the following command:

AF c=scldemo.mypgms.exmpl001.scl

This command invokes SAS/AF. The C= parameter further specifies that the catalog entry to be executed
is EXMPLO001.SCL in the MYPGMS catalog stored in the directory associated with the SCLDEMO libref.
The output of this program appears in the SAS Log as

my first SCL program

Admittedly, this is not a very interesting program. However, we have to start somewhere on our way to
learning to tap the more powerful features of SCL.

Learning About SCL Online

Your next question might be, "How do | learn more about the features of SCL?" The obvious answers
might be to read a SAS Institute publication or take a course. Those are good methods but they often
involve spending additional funds, waiting, or both! Consider another possibility-- using the online Help
system.

Using the online Help system as a reference to the SCL language requires that you already understand
DATA step programs and functions. The immediate need is to identify the types of functions that are
available to SCL programmers and the arguments and syntax associated with them.

To get to the list of SCL functions organized by category, pull down the Help menu selection and choose
SAS System. When you see the Contents listing, the temptation would be to choose Application
Development with SAS/AF Software or Screen Control Language. Resist that temptation! Instead, select
SAS System: Main Menu. Select Limited Index, then SAS/AF, then SCL, then Syntax. Finally, select SCL
Elements to bring up a list of SCL functions organized by categories. Please note that the help menus
differ on some platforms.



SCL elements are functions available to SCL programmers. Some of these functions are not available
within the DATA step. Note that you can also use most DATA step functions within SCL programs. Those
functions are listed in the online help for SCL syntax under SAS Functions.

As nonvisual SCL programmers, we can safely ignore the categories of functions that relate to screen
elements and the more esoteric features of the SCL language. These include:

*  Choice Group * Legend

e Cursor *  Method Block

« Display * Misc

» Extended Tables  SAS/FSP

e Field *  Object Oriented Programming
e Graphic Options *  Window

Keys

Instead, let us focus on the remaining categories of functions that may interest us.

The Character functions supplement those inherited from the SAS DATA step language. The only
CONTROL statement needed for nonvisual SCL is CONTROL ASIS, described later. Data File and
Variable functions provide a direct interface to SAS data sets and data set variables. Directory functions
provide the names and other attributes for the members of directory files. External File functions allow the
programmer to create, append, edit, and delete external (flat) files. Formatting functions transform SCL
variables using SAS or user-created formats.

One of the most powerful features of the SCL programming language is the SCL list, introduced with
Release 6.07 of the SAS System. An SCL list is a collection of information items, stored in memory. The
number of items can be expanded at will. The items contained in an SCL list need not be of the same
type. Character, numeric, and sublists may be stored in SCL lists. The items in a list may be retrieved by
their position or name. List items may be searched, sorted, rotated, reversed, and popped.

What does one do with an SCL list? Lists are a convenient means for storing and manipulating the values
obtained from interrogating SAS data sets and directories. The contents of SCL lists can be stored to and
retrieved from SLIST catalog entries. Thus, they become an ideal way to pass parameters from one SAS
session to another or from one computer platform to another.

Similar to macro variables, an SCL list can be local or global. When an SCL list is placed in the global
environment, the items created during the execution of an SCL catalog entry are available to other SCL
entries run during the same SAS session.

Because SCL programs are compiled in a single pass before they are run, they cannot write themselves
as is possible with the macro language. Hence, Macro functions provide an important interface to macro
variables. Similarly, the Message functions provide an interface to SAS System messages and return
codes that may be generated during program execution.

Considering interfaces further, while most of the DATA step language can be emulated using SCL, SAS
procedures often cannot be emulated. DATA steps and procedures may be sent to the SAS Supervisor for
execution by placing the statements to be run within a SUBMIT block. SCL or macro variables may be
referenced from within a SUBMIT block by prefixing the variable to be substituted with an ampersand (&).

To learn more details about any SCL function, from the Help Table of Contents, select Screen Control
Language, then SCL Dictionary. A detailed description is shown when a function is selected.
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A Second Example: Does a Data Set Exist? How Many Observations?

SCL is often used to test to see if a SAS data set exists. If the data set does exist, SCL may be used to
gather information about it to control a larger program. Consider the following example:

/* EXMPL002.SCL - Test data set for existence, # of observations. */
INIT:

/* Test to see if SCLDEMO.BASEBALL exists. */
rc=libname ('SCLDEMO', 'C:\SCLDEMO"') ;
baseball exist=exist ('SCLDEMO.BASEBALL');

/* If SCLDEMO.BASEBALL exists, get the number of observations. */
if baseball exist then do;
ds id=open ('SCLDEMO.BASEBALL', 'IS');
nobs=attrn(ds id, "NOBS') ;
put 'Number of observations in SCLDEMO.BASEBALL= 'nobs;
rc=close(ds_id);
end;

/* Next line suppresses compiler warning that rc is not used. */
rc=rc;
return;

In this example, we first test to see if a sample SAS data set containing 1986 baseball player statistics is
contained in the directory allocated to the SCLDEMO. For the purpose of illustration, the SCLDEMO libref
is allocated using the LIBNAME function even though it was already allocated by the first example. The
EXIST function returns a 1 if the SCLDEMO.BASEBALL data set exists.

Notice that this program takes advantage of the 32-character limit for the names of SCL variables. The
variable used for the return code, BASEBALL_EXIST, uses this feature to improve the readability of this
program. If the SCL variable is used to reference a SAS data set variable, the SCL variable name should
be kept to eight characters for compatibility purposes.

Because the SCLDEMO.BASEBALL data set exists, the next section of code is executed. The
SCLDEMO.BASEBALL data set is opened using the OPEN function. Because we don't need to change
the data set or access any observations directly, we use the IS option to open SCLDEMO.BASEBALL in
input-only, sequential mode.

The data set id, DS_ID, is a numeric variable set by the OPEN function. It is used to reference the
SCLDEMO.BASEBALL for the ATTRN function. We use the ATTRN function to obtain numeric attributes,
such as the number of observations (NOBS) in a data set. The message placed in the SAS Log appears
as

Number of observations in SCLDEMO.BASEBALL= 322

After putting the number of observations out to the SAS Log, we close SCLDEMO.BASEBALL using the
CLOSE function.

Before considering our next example, we might comment on the question, "Why not use %SYSFUNC to
accomplish this through a DATA step?". In Release 6.12, we could have used the %SYSFUNC macro
language function to accomplish these tasks. However, the advantages of SCL, such as long variable
names, easier to read code, and the SCL debugger would be lost.
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Third Example: Listing Valid Subdirectories

SCL can be a helpful tool to get information about the environment under which the SAS System is being
run. Because it is interfaced with that environment while the computer is operating, it is possible to
accomplish tasks that cannot be easily accomplished by other means.

For example, when using SAS on a directory-based platform such as Windows, you might want to get a
list of available subdirectories. Many SAS programmers faced with this problem might pipe the output from
the DIR command to a file and then use SAS to parse the file for directory names.

At best, it is a nuisance to make this approach work. If the directory listing shifts or changes for any
reason, the program will fail, perhaps without any warning! Further, it is not always clear what is a directory
and what is a file. You could check for the presence or absence of a file extension. However, some files
lack file extensions, while some subdirectories have them. Last, if the application is moved to another
platform (for example, from Windows to UNIX), the program will probably require changes.

The following SCL program overcomes these problems. Notice that it is built entirely from SCL functions.
There are no X command calls to the operating system (for example, the DIR command). The program
first opens the root directory for reading. If the directory open fails, the program puts a warning message
to the SAS Log and then stops.

Next, the SCL program collects a list of all directory members into the SCL list TMP_LST. To illustrate the
operation of this program better, the SCL list is written to the SAS Log for inspection. Then the program
attempts to open each directory. Those that were successfully opened are placed in the SCL list
DIR_LST. DIR_LST is then written to the SAS Log. Last, DIR_LST is written to an SLIST catalog entry so
it can be read and used by other SCL programs.

/* EXMPL003.SCL - Send the root subdirectory list to an SLIST entry. */
INIT:

/* Make temporary directory nodes list. */
tmp lst=makelist();

/* Open root directory to make list. */
rc=filename ('CURNODE', 'C:\");
dir id=dopen ('CURNODE") ;
if dir id 1t 1 then do;
put 'Directory Open Failed';
msg=sysmsg () ;
put msg;
return;
end;

/* Get directory entries. */
mbr cnt=dnum(dir id);
do i=1 to mbr cnt;

mbr nm=dread(dir id,1i);

rc=insertc(tmp lst,mbr nm,-1);
end;
rc=filename ('CURNODE',"'"); /* De-assign fileref. */
call putlist(tmp lst,'List of all Root Directory Members', 1);

/* Test directory entries to see if valid subdirectories. */
dir lst=makelist();
mbr cnt=listlen(tmp 1lst);
do i=1 to mbr cnt;

dir nm=getitemc(tmp lst,i);

tst pth='C:\'||dir nm;

rc=filename ('TSTNODE', tst pth);

tst id=dopen('TSTNODE');

12



if tst id then do;
rc=insertc(dir 1lst,dir nm,-1);
rc=dclose (tst id);
end;
rc=filename ('TSTNODE',"'");
end;
rc=dclose (dir_id);
rc=dellist (tmp 1lst);
call putlist(dir 1lst,'List of Valid Subdirectories',1);

/* Save directory list to an SLIST entry. */
dummylst=0; /* Dummy attributes list id. */
rc=savelist ('catalog',

'SCLDEMO.MYPGMS .EXMPLO0O3.SLIST',
dir 1st,
dummylst,
'List of Root Subdirectories');
rc=dellist (dir 1st);
rc=rc;
return;

Note that the absence of percent signs (%) and ampersands (&) makes this program easier to read and
comprehend. Further, when run in the SCL debugger (covered later), the program logic can be traced and
the SCL variable values may be inspected through the PUT and PUTLIST debugger commands.

One coding nuance is worth a comment. In the preceding SCL program, we determine if a directory entry
is valid by inspecting the returned value of TST_ID, which is the test directory identifier (a number). Any
directory identifiers not equal to zero tell us that the directory member is not a directory.

However, were we to use this technique to test the results of an operation where a write might be
performed, a return code not equal to zero might be acceptable. For example, in the case of libref
assignments, the return code -70004 tells us that the directory is already assigned to another libref but is
available for reuse.

It would be a fair comment that a list of directory members (subdirectories) is unlikely to be used outside
of a visual application using PROGRAM or FRAME entries. However, the technique demonstrated in this
example could be adapted for use within an unsupervised SAS program submitted in batch in order to trap
situations where a directory is unexpectedly made unavailable.

An example of this situation would be where a network fails and a drive assignment mapped to a file
server is temporarily invalid. By testing before the next SAS step fails, the batch program can be cleanly
terminated, saving computer cycles and avoiding potential data set corruption or over-writing. If a more
sophisticated approach is desired, our program could pass an e-mail or console message to alert an
operator of the problem. We can even save the current program status to a SAS data set or SLIST entry
to support an automated restart routine.

Interfacing SCL Variables with SAS Code

When SCL is used in applications with a visual component, a common approach is to gather program
parameters from the screen. However, when a nonvisual approach is desired, we can substitute a control
SAS data set created by hand or through some form of SAS processing. The values in the control data set
can be converted to SCL variables and passed to ordinary SAS programs. These programs may be
contained within SUBMIT blocks. SUBMIT blocks are pieces of SAS program code placed between
SUBMIT and ENDSUBMIT statements. SUBMIT blocks are passed without interpretation to the SAS
Supervisor.

That SUBMIT blocks are not interpreted by the part of the SAS System that processes compiled SCL
programs is an important feature to note. First the SAS code within a SUBMIT block is not checked for
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syntax. If there are errors, the SCL compiler will ignore them and they will not make their existence known
until the SCL code is run. When you create SCL variables solely for the purpose of putting them into
SUBMIT blocks, the following message may appear:

WARNING: [Line xx] Variable xxxxxxx 1s defined but not used

This message may be ignored or suppressed as we often do with the system return code variable
(SYSRC or RC) by including a statement that sets the variable equal to itself (for example, RC=RC).
Another feature of the SAS code within SUBMIT blocks is that if we run an SCL entry in the SCL
debugger, we do not see step-by-step execution of the code within the block. However, we could copy any
DATA step code within the SUBMIT block to the Windows clipboard, paste it in the Program Editor, and
test it with the DATA step debugger.

How are the values of SCL variables passed to SUBMIT blocks? Within the SUBMIT block, prefix the
name of the SCL variable with an ampersand (&). This raises two questions: is that not how we tell the
SAS System that a variable is a macro variable to be substituted by the macro compiler? Also, how does
the SAS System know what type of variable is represented by a variable prefixed by an ampersand (SCL
or macro variable)?

The answer to both questions is that when an SCL entry with a SUBMIT block is processed by the SCL
compiler, it looks to see if the variable prefixed by the ampersand is an SCL variable. If it is, the SCL
compiler inserts a reference to the SCL variable in the SUBMIT block. Otherwise, the SCL compiler
ignores the variable. At run time, the macro compiler attempts to resolve the variable prefixed by the
ampersand.

You might ask, "Why bother to use SCL to submit ordinary SAS programs? | can text edit my SAS code to
filter the input SAS data set to contain the desired values with an IF or WHERE statement. If | wish to run
a SAS procedure for each distinct value of a variable in my SAS data set, | can employ a BY statement."

You could use text editing to control a program for each run. However, text editing SAS code before each
run is a nuisance, and it opens up the possibility for all types of errors. Further, if your goal is to move the
responsibility for running a program to an operations department or a junior staff person, having to edit the
SAS code before submission makes that program a less attractive candidate to enter production.

Using a BY statement to obtain separate analyses for each value of the SAS variable is also a good
approach. However, what if you need to filter the observations passed to a SAS procedure on an ad hoc
basis? The following example illustrates this point:

/* EXMPL004.SCL - List statistics for pair of baseball teams. */

INIT:

/* Must use variables prior to FETCH in order to work. */
teaml="";
team2="";

/* Read selected teams from SAS data set. */

dsid=open ('SCLDEMO.SLCTTEAM', 'IS");
call set (dsid);
rc=fetch (dsid) ;
rc=close (dsid) ;

/* Make sure that indentation is preserved with SUBMIT block. */
control asis;

/* Print only the observations for the selected teams. */
submit continue;
proc print data=scldemo.baseball;

where team in('&teaml', '&team2');
run;
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endsubmit;
rc=rc;
return;

In this example, we wish to print the observations from the SAS data set used in our second example,
containing 1986 baseball player statistics for those players on either the Los Angeles Dodgers or St. Louis
Cardinals. We want to show both teams within the same list, so the BY statement approach will not satisfy
our requirement.

Our program first creates the SCL variables TEAM1 and TEAM2 by assigning null strings to them.
Otherwise, the FETCH function a few lines later will not work unless we employ GETVARC functions. We
open the control data set, SCLDEMO.SLCTTEAM with the OPEN function. The CALL SET statement links
SAS data set variables to SCL variables with the same name and type. The FETCH function copies the
values in the SAS data set variables TEAM1 and TEAM2 to the SCL variables by the same name. Last,
our program closes SCLDEMO.SLCTTEAM after the FETCH function is executed.

The SUBMIT block contains a PROC PRINT statement, followed by a WHERE statement. Note that in the
WHERE statement, single quotes have been placed around the SCL variables TEAM1 and TEAM2, which
have been prefixed by ampersands. If STEAM1 and &TEAM2 represented macro variables, double
quotes would have been required.

CONTROL statements are often used when SCL programs are used with screen displays and are largely
irrelevant for nonvisual SCL applications. However, our example uses a CONTROL statement with the

ASIS parameter. This tells the SAS System to preserve the indenting of the SAS program code typed
within the SUBMIT block when it is submitted for execution and echoed to the SAS Log.

This SCL program is run by submitting the Display Manager command:
AF c=scldemo.mypgms.exmpl004.scl
This yields the following listing in the SAS Log:

1 proc print data=scldemo.baseball;
2 where team in ('LosAngeles', 'StLouis');
3 run;

Figure 12 shows the output:
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Ei OUTPUT - [Untitled)
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Figure 12
Only the two teams that were selected appear in the PRINT procedure listing.

While the preceding example is contrived, the same logic can be adapted to situations where you might
wish to print a monthly report only for accounts that had some activity during the preceding month. The
control data set could be created by the SORT procedure, using the NODUPKEY option and the IN=
option. The PRINT procedure (or other analysis procedure or DATA step code) could be placed in a loop
that is executed once for each observation in the control data set.

This approach enjoys two potential advantages. First, SCL programs are often easier to comprehend and
debug than macro language programs that perform similar functions. Second, when compared to the
MERGE statement or SQL, SCL programs may yield greater computer efficiency. If the account history
SAS data set(s) are indexed, the SAS Supervisor quickly retrieves the desired observations when a
WHERE clause is used. With a MERGE or JOIN, intermediate data sets or tables may need to be
constructed, which probably consume more computer resources.

Table Look-up Using SCL Lists and Named Items

When table look-up is required in an ordinary SAS program, and running short of memory is not a
concern, the FORMAT procedure is often a good way to perform the look-up task. However, when coding
in SCL and an ad hoc look-up table must be created, the FORMAT procedure may be less attractive,
especially if it must be created via a SUBMIT block.

Fortunately, SCL provides a capable substitute, SCL lists with named items. Unlike the FORMAT
procedure, we can create and use SCL lists where the look-up key, which is the item name, may be
duplicated. However, for the following example, there is no duplication of keys.

In this example, SAS is used under MVS TSO. We wish to print a file to a remote printer and set the
destination automatically based upon the userid. Ordinarily, we would maintain the look-up table as a SAS
data set, as in the previous example. However in this example, we create the table directly within the SCL
program.
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/* EXMPL005.SCL - Print to a remote printer based upon user id. */
INIT:

/* Create the look-up SCL list. */
prt id lst=makelist();
rc=insertc(prt id 1lst, 'PT0001',-1,'USER1OLl");
rc=insertc(prt id 1lst, 'PT0005',-1, 'USER102");
rc=insertc(prt id 1lst, 'PT0006',-1, 'USER103");

/* Select printer. */
user id=symget ('SYSUID');
list position=nameditem(prt id lst,user id);
if list position then slctd prt=getitemc(prt id lst,list position);

else do;

put 'Unknown User Selected';

return;
end;

/* Create the PRINTOFF command. */
Xicmd:'PRINTOFF (MYPRINT) CLASS (A) DEST('\ISlctdiprtll')';

/* Issue PRINTOFF command. */

rc=optsetn ('XWAIT',O0);
rc=system(x_cmd) ;

/* Echo PRINTOFF command to the SAS Log. */
put x cmd=;
slctd prt=slctd prt;
rc=rc;
return;

Assume that USERO002 is the TSO user who has logged in. First, the SCL list, PRT_ID_LST, is created.
Each list item contains the remote printer assignment for a user, which is the item's name. We get the
TSO userid, USER002, by using the SYMGET function with the SYSUID argument. &SYSUID is the
name of the automatic macro variable containing the TSO userid. SYMGET is used because we need the
value for the userid at run time, not compile time.

To verify that USER102 has a remote printer assigned, the NAMEDITEM function is used. Because an
item named USER102 exists, NAMEDITEM returns the position of the list item. In this example, the item
is in the second position in the list so NAMEITEM returns the number 2. If the item named USER102 was
not in PRT_ID_LIST, the message "Unknown User Selected" would have been put to the SAS Log, and
the execution of the SCL program would have ended. In this example, the item's value, PT0005, is
assigned to SCL variable SLCTD_PRT.

Next, the TSO PRINTOFF command is built as the SCL character variable X_CMD. The OPTSETN
function is used to set the SAS system option XWAIT so that the native TSO window will close
automatically as soon as the SYSTEM function has finished issuing the PRINTOFF command. So that the
value of the external command passed to the SYSTEM function can be seen, it is echoed to the SAS Log
using a PUT statement.

For reference, please note that SCL item names are stored in uppercase regardless of how they are

entered. Also note that this example illustrates the use of SYMGET function as an interface to macro
variable values. In applications where it is necessary to pass an SCL value as a macro variable at run
time, use the SYMPUT function.
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Using an SCL Program when SAS/AF is Not Available

A frequent misconception about SCL programs is that SAS/AF must be installed on the computer where
the program will be run. All you need is base SAS. Starting with Release 5.18, SAS Institute has supplied
the DISPLAY procedure. Originally intended to support the Institute's CBT (Computer-based Training)
offerings, PROC DISPLAY also provides run-time support for all types of SCL programs.

To illustrate the use of PROC DISPLAY, let us suppose that we wish to run our first example on a
computer on which only base SAS is installed. We would submit the following program (assuming that the
SCLDEMO libref has already been allocated):

/* EXMPL006.SCL - demonstrate use of PROC DISPLAY. */

proc display c=scldemo.mypgms.exmpl001l.scl;
run;

This yields the same message that we saw earlier in the SAS Log:

my first SCL program
NOTE: The PROCEDURE DISPLAY used 0.27 seconds.

Please note that statements in SUBMIT blocks are not executed until the PROC DISPLAY has finished
executing.

Using SCL in Batch Programs

When SAS users are asked why they have not made use of the SCL language, one frequent answer is,
"I have to run my programs in batch mode." Certainly, the name Screen Control Language could easily
cause people to believe that SAS must be run interactively to take advantage of its features. Actually, the
reverse is true. SCL can supply the between run customization often required to put batch programs into
production.

Before we consider an example that illustrates the preceding principle behind batch program automation,
it may be useful to consider common reasons why programs are executed in batch mode. First, access to
some computer resources, such as magnetic tape drives, must be scheduled. A program often requests
such resources through the use of Job Control Language (JCL).

Second, some disk storage management systems archive data sets after a specified period of disuse to
tape or other slow-access storage media. Because there is no way to know how long it will take to restore
an archived data set, timesharing operating systems such as TSO will cause the file allocation to fail.
However, if the allocation is requested during batch operation, the operating system can wait until the
requested disk volume has been restored before scheduling the job for execution.

Last, batch-mode execution allows those who supervise large computer systems to shift computer
requests from periods of peak usage through the use of job classes. Some classes allow users to submit
batch jobs during the day for execution during the periods of low usage in the early evening or night.

Other classes allow batch jobs to be executed according to the sequence in which they were submitted
and their relative priority. These classes are set to allow only so many jobs with each class to be executing
at any moment.

How can SCL help us deal with batch submission scheduling systems? First, SCL programs can create
JCL statements and cause them to be passed to the batch job scheduling system. In most cases, tape
and archived data sets must be allocated outside of the SAS System for our programs to run successfully.
Equally important, SCL can supply the flexibility and intelligence required to permit unattended operation
of our programs.
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Consider our next example, in which an application is run on a mainframe that runs the MVS operating
system. We need to allocate filerefs for any member of a partitioned data set (PDS) whose member
names contain a specified character prefix. However, between the times that we request the program to
be run, the number and names of the PDS members change. Prior to each run, we could inspect the PDS
using ISPF and edit the program to allocate the filerefs through DD allocation statements.

A better approach is to write an SCL program that determines which PDS members meet our criteria and

takes care of the fileref assignments for the SAS program that follows. Even better, the SCL program can
automatically submit the entire program, JCL and SAS language statements together, for batch execution.
The following example does this. For clarity, asterisks (****) mark those parameters that each user would

need to adapt and they are shown in bold.

/* EXMPL007.SCL - Batch submission from SCL template. */
INIT:

/* Make temporary directory nodes list. */
tmp lst=makelist();

/* Open directory to make list. */
rc=filename ('CURNODE', '**** pds dsn ****');
dir id=dopen ('CURNODE') ;
if dir id 1t 1 then do;
put 'Directory Open Failed on MVS Host';
return;
end;

/* Put member names in list. */
mbr cnt=dnum(dir id);
do i=1 to mbr cnt;
mbr nm=dread(dir_ id,1i);
if substr(mbr nm,1,4) eqg '**** member prefix ****' then
rc=insertc(tmp lst,mbr nm,-1);
end;
rc=dclose (dir_id);
rc=filename ('CURNODE', '");
call putlist(tmp 1lst,'List of all MVS PDS Members',1);

/* Open file in which to write program. */

rc=filename ('INPGM',

'**** temp program dsn ****x!',

T

r

'DISP=(NEW, KEEP, DELETE) SPACE=(TRK, (2,1))

LRECL=80 BLKSIZE= 4000 RECFM=FB');
file id=fopen('INPGM',6'0");
rc=fput (file id,"//**** JOB STATEMENT ****");
rc=fwrite(file id);
rc=fput(file_id,"//STEPl EXEC SAS,OPTIONS='ERROR=1'"'");
rc=fwrite(file id);

/* Write DD statements. */
n=listlen(tmp lst);
do i=1 to n;
dd name='RAW' | |put (n,23.);
mbr nm=getitemc (tmp lst,i);
dsn="**** pds dsn name ****('||dd name||"')"';
dd stmt='//"'||dd namel||' DD DSN='| |dsn||"',DISP=SHR';
rc=fput (file id,dd stmt);
rc=fwrite(file id);
end;
rc=fput (file id,'//SYSIN DD *');
rc=fwrite(file id);
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/* Include SAS program. */
rc=fput (file id, "$INCLUDE ('**** SAS program dsn ****')");
rc=fwrite(file 1id);
re=fput (file id, '/*');
rc:fwrite(fife_id);
rc=fclose (file 1id);
rc:filename(‘INPGM',");

/* Submit program to internal reader. */

rc=filename ("INPGM',

'*%** temp program dsn ****',

T

r

'DISP=SHR') ;
rc=filename ('OUTRDR',

'A',

ll,

'SYSOUT=A PGM=INTRDR RECFM=FB LRECL=80");
inpgm id=fopen ('INPGM',6 'I");
inrdr id=fopen ('OUTRDR','0");

do while (fread(inpgm id)=0);
rc=fget (inpgm id,buffer, 80);
rc=fput (inrdr_ id,buffer);
rc=fwrite (inrdr id);

end;

rc=fclose (inpgm_id);
rc=fclose (inrdr_id);
rc=filename ('INPGM','")
rc=filename ('OUTRDR', "'
rc=rc;

return;

)

How does this program work? The logic used in the second example to identify the file directory members
has been adapted to identify PDS members. That we can use the same SCL code when running either
under Windows or MVS is a powerful illustration of the cross-platform portability of SCL. The output of this
section is the creation of SCL list TMP_LST, in which we have placed the names of PDS members that
meet the selection criteria.

Next, a new file, INPGM, is allocated to contain the program statements by using the FILENAME function.
Note how the various allocation parameters are supplied as a character string, delimited by spaces. We
open the record pointer to INPGM using the FOPEN function so that the FPUT and FWRITE functions
may place program statements in it. The FPUT function places the requested character string in the
output buffer, and the FWRITE function moves the buffer to the INPGM file.

The section labeled "Write DD statements" is a loop that writes as many DD allocation statements as
there are member names in the TMP_LST SCL list. If desired, this loop could have been coded so that the
members would have been concatenated into a single fileref. To make it easier to substitute different SAS
programs after the SYSIN DD statement, the %INCLUDE statement is used. Remember that we can
allocate additional files and librefs within the included program by using FILENAME and LIBNAME
statements.

Then INPGM is closed and reallocated. This rewinds INPGM so that the record pointer is positioned to the
beginning of file. The fileref OUTRDR points to the Internal Reader, which is the portion of the operating
system that accepts various computer language statements for batch execution. The DO WHILE loop
passes each statement in INPGM to the internal reader.

Next, close the record pointers to the INPGM and the OUTRDR file reference. Last, the INPGM and
OUTRDR filerefs are freed. Note that in a production program, the INPGM probably would have been
allocated using the UNIT= or MGMTCLAS= parameters so that it would be deleted after a specified
interval.
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Note that in this example, the batch program could have been written directly to OUTRDR. However, by
first writing to a file, you can inspect the statements created by FPUT and FWRITE functions during
development by opening the file into the Program Editor window.

Using the SCL Debugger

Releases 6.11 and 6.12 made a DATA step debugger available to SAS users. However, an SCL debugger
has been supplied with SAS/AF from a much earlier time. When an SCL program does not work as
intended but the programmer knows the sequence in which statements are executed, the use of PUT
statements may be a faster means to debug the program. However, when the execution sequence is
unknown or is suspect, the SCL debugger can be a godsend. Further, if your goal is to move on to visual
SCL programs, the SCL debugger is an excellent way to learn when particular labeled sections are
executed.

The SCL debugger is available when an SCL program has been compiled in the Build window while debug
mode has been toggled on. When the SCL program does not contain any SUBMIT blocks (the exception
is SUBMIT SQL), it may be run in the debugger by selecting the desired SCL entry and issuing the
TESTAF command. SCL programs with SUBMIT blocks may be run in the debugger by exiting the Build
window and issuing the AF command with the option DEBUG=YES.

When we run the third example (EXMPL003.SCL) in the debugger, the screen looks similar to Figure 13.

¥ SAS M= E3

File Edit “iew BRun Breakpoint Globalz Option:  “window Help

] o ] Dzl Sl %@ o el &zl 9
SCL SOURCE LANGUAGE DEBUGGER: SCLDEMO MYPGMS EXMPLODZ S5CL | =

00013 a

00014 /% make temporary directory nodes list */

PERIER p 1o tm MAKELISTL) & o A,

00016

00017 /% open root directory to make list */

00018 rc= FILENAHME( 'CURNODE’,'C:%") ;
00019 dir_id= DOPEN( 'CURNODE') ;

00020 IF dir_id 1t 1 THEN DO ;

00021 PUT 'DOPEN FAILED ON UMIX HOST' ;
Q022 return ;

00023 end ;
00024

00025 /% get directory entries %/ =~

. | |
I'® MESSAGE M= 3 ||
Stop at line 15 in SCLDEMOD.HMHYPGMS.EXMPLO0OOZ _SCL _ﬁ |
DEBUG> | ~|I
] <I i 4 A

Figure 13

The documentation for the debugger lists over 20 commands. However, only a few of these are commonly
used. To step through an SCL program line by line, press the Enter key. To see the value of an SCL
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variable, type PUT or E or EX, followed by the variable name. To see the values in an SCL list, type
PUTLIST, followed by the list name. To leave the debugger, type QUIT.

After an SCL entry has been thoroughly debugged, it should be recompiled with the debug mode toggled
off. This will reduce the size of the SCL entry and help it to run faster. Also, experienced SCL
programmers make debugging easier by coding compact SCL entries that invoke other entries using
CALL DISPLAY or CALL GOTO statements. Only the entry that is suspect is compiled with the debug
mode turned on, greatly speeding the debugging exercise.

Conclusion

SCL greatly extends the flexibility and scope of the SAS System. Ironically, many SAS programmers think
SCL is too complicated for their use. Yet its similar appearance to SAS code should endear it to those who
would sooner resort to the macro language, whose syntax and appearance is often more confusing. When
we strip the SCL programming language to the essentials required for nonvisual applications, SCL often
seems simple. With the encouragement of this article, consider extending the range of your programming
abilities by using SCL in both nonvisual and visual applications.
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