Job Control Story Report: JC8 — Define Job Criteria and Actions

Revision Reason Author Date

0.01 Initial document Peter 04Feb2011
Villiers

0.02 Added information about the “not” condition Ann 05Aug2011
Bagley

0.03 Added managedServer to the process columns Ann 15Nov2012
Bagley

Story Summary:
As a Job Control Manager, | want to be able to define selection criteria for jobs and course of action to be taken
on those jobs, so that jobs can be identified/high priority projects can be allowed more resources.

Preconditions:

e The Installer has installed the Job Controller client application.

e The server side of the application has been installed.

* The client side application has been tested to confirm that it works.

e The Job Control Manager has the ability to copy & edit the configuration files associated with the client
application.

Story Path (Main):

The client side application has been installed and is known to work. The job control manager wants to define limits
on jobs running in the system and the subsequent actions that are to be taken against the jobs that match the
criteria. The user may also want to specify “globally exempt” jobs which are not subject to any of the criteria.

In the following text, JC_HOME is meant to be the location where the Job Controller client is installed.

There are 2 options for how to maintain the criteria and actions:

e The JC_HOME/conf/sddActions.xml file can be edited directly. This is the simplest in terms of initial setup.
HOWEVER, if a new version of the client is installed, the file should be backed up prior to the installation.
The tagging definitions will then need to be transferred to the newly installed file.

e The JC_HOME/conf/sddActions.xml file can be copied to another location and edited there. In this case,
the JVM option “-Djc_action_defs=the-path-to-the-custom-sddActions.xml” can be added to the startup
command to point to the custom file. This is the preferred option as it separates the installed application
from the custom configuration.

The second option will be illustrated in the steps below. An example configuration directory will be shown
however this could be anywhere:

Navigate to the parent directory of JC_HOME.

Create a directory called “JobController-customConfig”.

Copy the sddActions.xml file from “JC_HOME/conf” to the “JobController-customConfig”.

Edit the “JobController-config/sddActions.xml”.

Save the file.

Remember to add the startup option to any scheduled jobs that should use the new tagging definitions.

owuswNRE

Setting the Global Exclusions:
1. Edit the contents of the element SddJobController/Actions/GlobalExcludes to contain <ActionCondition>
and/or <ActionBracket> elements. Multiple elements under the <GlobalExcludes> element are evaluated
using an “OR” operator.

Adding a new Action Definition
The element SddJobController/Actions contains a sub-element for each Action.
1. Either:
a. Copy/paste an existing element that is similar to what is needed, or
b. Add a new one from scratch.

The Action logic evaluates the process using the <GlobalExclude>, <Exclude> and <Include> elements (in that
order) to determine if a process meets the criteria and if so will mark the process with the <ActionConsequence>
information and the <DescriptionText> value for execution and reporting.

In the following “@xxxxx” is meant to denote an XML attribute.

The main element <Action> can have the following sub-elements:
e <Description> - provides a location to hang
o <DescriptionText> - A description of the condition set that is being tested for. Will be seen in
emails. The separate text element allows for expansion to handle multiple languages later if
need be.
e <ActionConditions> - defines the conditions that will be checked for the parent <Action> element.
o <Include> - a set of <ActionCondition> and <ActionBraket> elements that are evaluated using an
“OR” operator to determine if the process meets the criteria for inclusion.
= <ActionCondition> - provides a way to test the information collected for the process.
o @field —the name of the field to be tested. These are the same as the
comment field in job history log file.
® @comparator — provides the condition that will be used for the evaluation.
The following table describes which conditions may be used

Field Type Operator Process Columns
String eq —equals host, sddUser, sasworkPath, sasworkSizeUnits,
eqic — equals ignoring case sasutilPath, sasutilSizeUnits, tags,
contains — contains managedServer
startswith — starts with
Integer, eq —equals processld, elapsedTime, cpuTime, cpuPercent,
Double gt —greater than memSize, memPercent, sasworkSize,
ge — greather than or equal to sasutilSize
It —less than
le —less than or equal to
Date eq —equals started
gt —greater than
It —less than

® The value of the attribute will be used to perform the comparison.
= <ActionBracket> - defines how the sub-element results are combined. It can contain
either <ActionBrackets> or <ActionConditions>. If “not” is the logic condition for the
<ActionBracket> then it will only contain one sub-element (either an <ActionBracket> or
<ActionCondition>. If the logic condition is “and” or “or”, then there can be multiple
sub-elements.
e @condition —the logic condition used to combine the sub-elements.
o <Exclude> - a set of <ActionCondition> and <ActionBraket> elements that are evaluated using an
“OR” operator to determine if the process meets the criteria for exclusion.

e <ActionConsequences> - the list of consequences that should be applied if the process meets the
conditions.
o <ActionConsequence> - a single consequence.
= @type —the type of action that should be performed. See the section below on
“Defining Consequences” to determine what the valid values are.

Defining Consequences
These are defined in the JC_HOME/conf/sddActions/sddConsequenceDefs.xml file. The users should not edit this
file. However, the @type is the name that would be used in the sddActions.xml file.

Considerations / Assumptions:

Test Automation:
e JUnit tests for testing consequence completeness and the comparison logic. Also the building up of
actions via the “bracket” concept.

Known Limitations:
e None

