THE POWER TO K NOW,

SAS” Life Science
Analytics Framework: SAS
Macro APl 2.4 User'’s
Guide

* This document might apply to additional versions of the software. Open this document in SAS Help Center and click
on the version in the banner to see all available versions.

SAS® Documentation
December 16, 2020

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lsafmapiug&pubcode=76398&id=titlepage

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2020. SAS® Life Science Analytics Framework: SAS Macro
API 2.4 User’s Guide. Cary, NC: SAS Institute Inc.

SAS® Life Science Analytics Framework: SAS Macro API 2.4 User’s Guide
Copyright © 2020, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you
acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at
private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software
by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR
227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other
notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those
set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414
December 2020

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

2.4-P1:Isafmapiug

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Audience
Audience

Installing the Macros
Overview
Requirements
Install Macros on Microsoft Windows
Verify the Installation

SAS Life Science Analytics Framework Macros
Introduction
SAS Macro Return Codes
Using the Macros

Queries
Overview
Input Data Set
Validating the Input Data Set
Running the Query
Global Macro Variables
Query Macros
Query Audit Records
Query the Recycle Bin

—_

GQWWwWww

o~~~

1"

12
14
14
14
15
16
24

iv Contents

Audience

Audience 1

Audience

This guide is intended for users who want to access functionality within the SAS Life
Science Analytics Framework using macros.

You must be familiar with SAS Life Science Analytics Framework functionality, such
as type definitions, contexts, files, and access permissions. For reference
information about SAS Life Science Analytics Framework functionality, see the SAS
Life Science Analytics Framework online Help and User’s Guide.

2 Chapter 1 / Audience

Installing the Macros

Overview
Requirements

Install Macros on Microsoft Windows

g W W »w

Verify the Installation

Overview

This chapter describes how to install the SAS Life Science Analytics Framework
Macro API, which is distributed in the Isaf-sas-macro-2.4.zip.

Requirements

The SAS Life Science Analytics Framework Macros requires these items:
SAS Life Science Analytics Framework Java API client version 2.4
For PC SAS, at least SAS 9.4M7

Install Macros on Microsoft Windows

1 Follow the instructions in the Getting Started with the SAS Life Science Analytics
Framework Java APl document to install the Java API client.

4 Chapter 2 / Installing the Macros

Be sure to note the location of the lib directory, which is typically:
C:\lsaf-java-api-client-2.4\1ib
2 Unzip the contents of Isaf-sas-macro-2.4.zip to C:\.
This step creates these files and folders in C:\:
lsaf-sas-macro-2.4\conf
This folder contains example configuration files.
lsaf-sas-macro-2.4\docs

This folder contains the documentation for the SAS Life Science Analytics
Framework Macro API, which includes the detailed documentation that
describes all of the macros that are delivered with the distribution.

lsaf-sas-macro-2.4\1lib
This folder contains the sas.Isaf.api.macro.jar file.
lsaf-sas-macro-2.4\sasmacros

This folder contains the SAS Life Science Analytics Framework macros
as .sas files.

3 Determine the location of your SAS installation and the configuration file.
In a typical Windows Unicode support installation, !sasroot points to this location:

C:\Program Files\SASHome\SASFoundation\9.4\nls\u8

4 Back up the file 'sasroot\sasv9.cfg.

You will edit it in the next step.

CAUTION

Use extreme care when you edit this file, and modify only the indicated
text. Ensure that you do not insert any carriage returns in the sas.app.class.dirs
option. If you have any questions, concerns, or problems, contact SAS Technical
Support.

5 Edit the file 1sasroot\sasv9.cfg to add these lines near the top of the file,
immediately above the comment box with the “WARNING:” label in it:

/* define the location of the SAS Life Science Analytics Framework Macro API */
-append sasautos "C:\lsaf-sas-macro-2.4\sasmacros"

/* put both the macro and java api client jars on the classpath */
-JREOPTIONS (-Dsas.app.class.dirs=C:\lsaf-sas-macro-2.4\1lib;C:\1lsaf-java-api-
client-2.4\1ib)

/* prevent a classpath not set warning from javaobj */
-SET CLASSPATH !CLASSPATH

6 Save the file and start a new SAS session to verify the installation.

Verify the Installation 5

Verify the Installation

In the SAS session, run the following SAS code to display the settings for the
JREOPTIONS and to verify that the JRE is configured properly.

This code also verifies that the SAS Life Science Analytics Framework macros are
installed and functioning as expected.

Note: Replace Isaf-instance, Isaf-user-ID, Isaf-password, and valid-container-path
with the values for your instance of the SAS Life Science Analytics Framework.

/* verify the JRE settings */
options mprint;

proc javainfo;

run;

/* initiate a connection to SAS Life Science Analytics Framework */
$1lsaf login(lsaf url=%str(https://lsaf-instance),

lsaf userid=%str(lsaf-user-ID),

lsaf password=%str(lsaf-password)) ;

/* print version information */
%1lsaf getapiversions() ;

/* List the contents of a folder in the SAS Life Science Analytics Framework repository
*/

%1lsaf getchildren(lsaf path=%str(valid-container-path));

proc print;
title "List of Items in valid valid-container-path";

run;

/* terminate the connection to the SAS Life Science Analytics Framework */

%$1lsaf logout () ;

The code generates a list of the contents in the specified container that is in the
SAS Life Science Analytics Framework repository.

The SAS log file contains information that might be useful for debugging the
installation of the SAS Life Science Analytics Framework macros.

6 Chapter 2 / Installing the Macros

SAS Life Science Analytics
Framework Macros

Introduction
SAS Macro Return Codes

Using the Macros
Using the Ampersand Character (&) in URLs
The Proper Case for Parameter Values
Quoting Parameter Values

Introduction

The SAS Life Science Analytics Framework SAS Macro API enables you to use
familiar SAS macro syntax to act on the content that is in the repository and
workspace.

SAS Macro Return Codes

After the execution of each macro, the global macro variable LSAFRC __contains a
return code that indicates the success or failure of the operation. The global macro
variable _LSAFMSG__ contains text information that indicates the success or the
cause of the failure.

© 000 N N

8 Chapter 3 / SAS Life Science Analytics Framework Macros

Table 3.1 SAS Macro Return Codes

Value

-100

-200

-300

-301

-302

-500

-999

Explanation
The macro executed without error.
The macro executed with an error. See return message for error details.

There is no SAS Life Science Analytics Framework session. This is
applicable only when calling a macro from PC SAS.

Invalid records were found in the input data set for a query macro.

One or more notes were reported as a result of a clinical import operation.
One or more warnings were reported as a result of a clinical import operation.
One or more errors were reported as a result of a clinical import operation.
An unexpected error has occurred.

No return code was set.

Using the Macros

Using the Ampersand Character (&) in URLs

For a macro with a parameter that specifies a URL, such as a macro that sets
properties, you cannot embed the ampersand character (&) in the URL. The
ampersand character is a special character in SAS. If you embed an ampersand
character, SAS attempts to resolve the subsequent text as a macro variable.

The Proper Case for Parameter Values

Although SAS is case insensitive, the parameter values passed to the SAS Life
Science Analytics Framework might be case sensitive.

Using the Macros 9

Quoting Parameter Values

To ensure consistent results, it is recommended that parameters of type String be
specified one of the string functions, such as %str() or %nrbquote(). Using double
quotation marks results in a SAS syntax error.

10 Chapter 3 / SAS Life Science Analytics Framework Macros

11

Queries

OVerVIeW 12
Input Data Set 12
Validating the Input Data Set 14
Running the Query 14
Global Macro Variables 14
Query Macros 15
General Syntax of the Query Macros 15
Required Parameters 15
Optional Parameters 15
Query Audit Records 16
OVEIVIEW . . . 16
Identify the Values to Use inthe Query 16
Create the Input Data Set forthe Query 17
Runthe Query 17

Example 1: Find All Records of Successful Log On or Log Off for a Single User ... 18
Example 2: Find All Records of the Contexts That Were Created or

Permanently Deleted by Several Users 19
Example 3: Find All of the Files That Were Checked Out by a User
from a Folder and Its Subfolders, within a Time Frame 21
Example 4: Find Details about the User Roles That Were Created by a User 23
Query the Recycle Bin 24
OVEIVIEW . . . 24
Identify the Values to Useinthe Query 24
Create the Input Data Set forthe Query 25
Runthe Query 25
Example 1: Find All ltems That Were Deleted after a Specific Date
and Time withina Context 26
Example 2: Find All Unversioned SAS Data Sets That Are Greater
Than 100,000KB withina Context 27

Example 3: Find All Files That Have More Than Two Versions within a Context ... 29
Example 4: Find All Folders That Are Greater Than 200,000KB within a Context . . 30

12 Chapter 4 / Queries

Overview

Query macros extract data that is stored in the SAS Life Science Analytics
Framework. The query is built from an input data set. The extracted data is stored in
a comma-separated values (.csv) file in your workspace or in the repository.

Input Data Set

The input data set must contain at least these columns. All other columns are
ignored.

Table 4.1 Input Data Set Columns

Column Name Description Valid Values
recordType The type of query element SELECT
that the record represents. The specified columnName is included in the output

file. If no observations with recordType=SELECT are
included in the data set, all allowable columns are
included in the query.

ORDER_ASCENDING
The output file is sorted by the specified columnName
in ascending order, and the level is indicated by the
specified value.

ORDER_DESCENDING
The output file is sorted by the specified columnName
in descending order, and the level is indicated by the
specified value.

CONSTRAINT
The data to use to create a single comparison
condition for the query.

CONSTRAINT_RANGE
The data to use to create a single comparison to
determine whether a column value falls between the
two specified values. This option is available only for
query columns of type numeric and date.

LOGICAL_OPERATOR
The data to use to join the query.

columnClass The class of the columnto ColumnClass is not required when recordType is
use with the query LOGICAL_OPERATOR and, if specified, is ignored.
operation that is
associated with
recordType.

To get the columnClass data and the data types, call
the macro %LSAF_GETQUERYCOLUMNS.

Column Name

columnName

value

comparator

Description

The name of the column to
use with the query
operation that is
associated with
recordType.

The value to use with the
query operation that is
associated with
recordType.

Indicates how the query
should handle the
constraint.

Input Data Set 13

Valid Values

ColumnName is not required when recordType is
LOGICAL_OPERATOR and, if specified, is ignored.

To get the columnName data and the data types, call
the macro %LSAF_GETQUERYCOLUMNS.

The value varies, depending on recordType.
recordType is SELECT
A value is not required and, if specified, is ignored.

recordType is ORDER_ASCENDING or
ORDER_DESCENDING

The sort level for the specified columnNames. The
value is required, must be an integer, and must be
uniqgue among the ORDERX records in the data set.
They do not need to be sequential or start at 1. The
ORDERX records are sorted by value prior to
processing.

recordType is CONSTRAINT

A value is required and must match the expected
type of the specified columnName (such as date or
numeric). For character values, the wildcard
character * is allowed when the comparator is LIKE
or NOT_LIKE.

recordType is CONSTRAINT_RANGE

Two comma-separated values of like types (such
as date), where the first value precedes the second
and the type is consistent with the type of the
specified columnName. For example:
04Jan2018:20:48:41, 19Jan2019:40:00:00

recordType is LOGICAL_OPERATOR

How the constraint records are joined: AND or OR.
The values are case-insensitive.

A value is required when recordType is CONSTRAINT.
If specified for any other record type, it is ignored.

EQUAL

NOT_EQUAL

LESS_THAN
GREATER_THAN
LESS_THAN_OR_EQUAL
GREATER_THAN_OR_EQUAL
LIKE

NOT_LIKE

14 Chapter 4 / Queries

Column Name

isCaseSensitive

Description Valid Values

Indicates whether a Case sensitivity is applicable when recordType is
column value is treated as ORDER_ASCENDING, ORDER_DESCENDING, or
case-sensitive. CONSTRAINT and the associated column is of type

STRING. Otherwise, the value, if specified, is ignored.
If a value is not specified for applicable record/column
types, the default value is used.

0
1
The default is 1.

Validating the Input Data Set

The input data set that contains the query is validated prior to running the query.
The results of the validation are stored in an output data set.

If the input data set validation succeeds, the query is run and the resulting query is
printed to the SAS log file.

If the input data set validation fails, the query is not run nor printed to the SAS log
file. You can review the validation results in the data set that you specify with the
LSAF_VALIDATEDDATASET parameter. The validationNote column lists the errors.

Running the Query

Global

To run the query, you must have the proper privilege. The reference information for
each macro lists the required privilege.

If the query results in more than one million records, the macro fails.

Macro Variables

Global macro variables that are specific to each query contain the full path of the
query results that are specified in a comma-separated values file. The macro
variable includes the file extension. If the query is not executed or if the macro
processing results in a failure, the macro variable is blank.

Query Macros 15

Query Macros

General Syntax of the Query Macros

%LSAF_QUERYquery-name(
LSAF_QUERYDATASET=query-data-set-name,
LSAF_VALIDATEDDATASET=validated-data-set-name,
LSAF_EXPORTLOCATION=REPOSITORY | WORKSPACE,
LSAF_EXPORTPATH=export-path

<, LSAF_OVERWRITE=0 | 1>

<, LSAF_ENABLEVERSIONING=0 | 1>

<, LSAF_VERSIONTYPE=MAJOR | MINOR | CUSTOM>

<, LSAF_CUSTOMVERSION=custom-version>

<, LSAF_COMMENT=comment>);

Required Parameters

LSAF_QUERYDATASET=query-data-set-name
The name of the input SAS data set that contains the query metadata, specified
as LIBREF.DATASET. When querying against the columnName MODE with the
columnClass of AuditEntry, the valid values are USER, SYSTEM, and ADMIN.

LSAF_VALIDATEDDATASET=validated-data-set-name
The name of the output SAS data set to contain the results of the validation of
the records from the input data set Isaf_querydataset, specified as
LIBREF.DATASET. The default depends on the query macro.

LSAF_EXPORTLOCATION=REPOSITORY | WORKSPACE
The case-insensitive output location for the exported CSV file.

LSAF_EXPORTPATH=export-path
The case-sensitive output path for the exported CSV file.

Optional Parameters

LSAF_OVERWRITE=0 | 1
Indicates whether an existing nonversioned file is overwritten. The default is 0.

LSAF_ENABLEVERSIONING=0 | 1
Indicates whether versioning is enabled for a file that is added to the repository.
When LSAF_EXPORTLOCATION=WORKSPACE, this value is ignored. The
default is 0.

16 Chapter 4 / Queries

LSAF_VERSIONTYPE=MAJOR | MINOR | CUSTOM
The version type to use to create a file in the repository. When
LSAF_EXPORTLOCATION is WORKSPACE or LSAF_ENABLEVERSIONING is
0, this value is ignored. The default is MAJOR.

LSAF_CUSTOMVERSION=custom-version
The version number to use to create a customized versioned file in the repository
when LSAF_VERSIONTYPE is CUSTOM. When LSAF_EXPORTLOCATION is
WORKSPACE, LSAF_ENABLEVERSIONING is 0, or LSAF_VERSIONTYPE is
not CUSTOM, this value is ignored.

LSAF_COMMENT=comment
The check-in comment to associate with the action of adding a file to the
repository. When LSAF_EXPORTLOCATION=WORKSPACE, this value is

ignored.

Query Audit Records

Overview

In the SAS Life Science Analytics Framework user interface, you can query the
audit history using simple queries. For more complex queries, you can use SAS
macros in a SAS session.

There are several important pieces of information that you generally need to create
a query:

The identifier of the object type to query.
The user actions for the object type.

The classes and names of the metadata columns.

|dentify the Values to Use in the Query

1 Run %lsaf_getAllTypes.

This macro creates a data set that contains all of the object type identifier values
for which audit actions are recorded.

2 Open the data set that was created in the previous step, and record the id of the
object type that you need for the query.

3 Run %lsaf_getAuditActions with the id from the previous step.

This macro creates a data set that contains all of the user actions that are
applicable to the object type identifier.

Query Audit Records 17

4 Open the data set that was created in the previous step, and record the action
that you need for the query.

You can specify multiple actions in a query.
5 Run %lsaf_getQueryColumns.
This macro creates a data set of the columns that can be queried.

To query the audit entry columns, specify AuditEntryQuery. To query the audit
detail columns, specify AuditEntryDetailQuery.

6 Open the data set that was created in the previous step, and record the
columnName that you need for the query.

You can specify multiple columnNames in a query.

Create the Input Data Set for the Query

1 Run %lsaf_getQueryTemplateDataset.

This macro creates a zero-observation data set that contains the variable
metadata that is required to create the input data set for the query.

2 Create and run a DATA step that uses the values that you recorded in “Identify
the Values to Use in the Query” on page 16 to create a data set that is the query.

See Also

“Input Data Set” on page 12
“Validating the Input Data Set” on page 14

Run the Query

Run %lsaf_queryAuditEntries.

This macro validates and runs the query to produce a CSV file that contains the
results.

See Also

“Running the Query” on page 14

“Query Macros” on page 15

18 Chapter 4 / Queries

Example 1: Find All Records of Successful Log On
or Log Off for a Single User

|dentify the Values to Use in the Query

1

Get all of the object type values:
%$lsaf _getAllTypes;

In the Isafgetalltypes data set, the relevant value is sas:user.

Get all of the actions for sas:user:

%$1lsaf getAuditActions(lsaf typeID=%str (sas:user),
sas_dsName=user actions) ;

In the user_actions data set, the relevant values are logonSuccessful and
logoffSuccessful.

Get a list of the columns that can be queried:
%$1saf_getQueryColumns (lsaf queryType=AuditEntryQuery) ;

In the Isafgetquerycolumns data set, the relevant values are userld and action.

Create the Input Data Set for the Query

1

Create a zero-observation data set with the variable metadata needed to create
the input data set:

%$lsaf _getQueryTemplateDataset;
Create the input data set for the query:

data logonLogoff;
if 0 then set lsafGetQueryTemplateDataset;

* NOTE: Below, replace user identifier with a valid user identifier;

recordType="CONSTRAINT"; columnClass="AuditEntry"; isCaseSensitive=0;

columnName="userId"; comparator="EQUAL"; value="user identifier";
output;

* Logical operator;
recordType="LOGICAL OPERATOR"; columnClass=""; isCaseSensitive=0;
columnName=""; comparator=""; value="AND"; output;

recordType="CONSTRAINT"; columnClass="AuditEntry"; isCaseSensitive=0;
columnName="action"; comparator="EQUAL"; value="logonSuccessful";
output;

Query Audit Records 19

recordType="CONSTRAINT"; columnClass="AuditEntry"; isCaseSensitive=0;
columnName="action"; comparator="EQUAL"; value="logoffSuccessful";
output;
run;

Run the Query

1 Run the query:

%$lsaf queryAuditEntries(lsaf queryDataSet=logonLogoff,

lsaf validatedDataSet=validate logonLogoff,

lsaf exportLocation=workspace,

lsaf exportPath=%str(/Users/user identifier/logonLogoff.csv),
lsaf overwrite=1);

2 In your workspace, open logonLogoff.csv and review the results.

Example 2: Find All Records of the Contexts That
Were Created or Permanently Deleted by Several
Users

|dentify the Values to Use in the Query

1 Get all of the object type values:
%$lsaf_getAllTypes;
In the Isafgetalltypes data set, the relevant value is sas:context.

2 Get all of the actions for sas:context:

%$1lsaf getAuditActions(lsaf typeID=%str (sas:context),
sas_dsName=file actions);

In the file_actions data set, the relevant values are created and
permanentlyDeleted.

3 Get a list of the columns that can be queried:

%$1saf_getQueryColumns (lsaf queryType=AuditEntryQuery) ;

20 Chapter 4 / Queries

In the Isafgetquerycolumns data set, the relevant values are userld, action, and
sourceTypeld.

Create the Input Data Set for the Query

1 Create a zero-observation data set with the variable metadata needed to create
the input data set:

%$lsaf getQueryTemplateDataset;
2 Create the input data set for the query:

data contexts;
if 0 then set lsafGetQueryTemplateDataset;

* Contexts created or permanently deleted by 3 users;

recordType="CONSTRAINT"; columnClass="AuditEntry"; isCaseSensitive=0;

columnName="sourceTypeId"; comparator="EQUAL"; value="sas:context";
output;

* Logical Operator;
recordType="LOGICAL OPERATOR"; columnClass=""; isCaseSensitive=0;
columnName=""; comparator=""; value="AND"; output;

recordType="CONSTRAINT"; columnClass="AuditEntry"; isCaseSensitive=0;
columnName="action"; comparator="EQUAL"; value="created"; output;

recordType="CONSTRAINT"; columnClass="AuditEntry"; isCaseSensitive=0;
columnName="action"; comparator="EQUAL"; value="permanentlyDeleted";
output;

* NOTE: Below, replace the user identifiers with valid user
identifiers.

recordType="CONSTRAINT"; columnClass="AuditEntry"; isCaseSensitive=0;

columnName="userId"; comparator="EQUAL"; Value="user identifierl";
output;

recordType="CONSTRAINT"; columnClass="AuditEntry"; isCaseSensitive=0;
columnName="userId"; comparator="EQUAL"; value="user identifier2";
output;

recordType="CONSTRAINT"; columnClass="AuditEntry"; isCaseSensitive=0;
columnName="userId"; comparator="EQUAL"; value="user identifier3";
output;
run;

Query Audit Records 21

Run the Query

1

2

Run the query:

%lsaf queryAuditEntries(lsaf queryDataSet=contexts,

lsaf validatedDataSet=validate contexts,

lsaf exportLocation=workspace,

lsaf exportPath=%str(/Users/user identifier/contexts.csv),
lsaf overwrite=1);

In your workspace, open contexts.csv and review the results.

Example 3: Find All of the Files That Were Checked
Out by a User from a Folder and Its Subfolders,
within a Time Frame

|dentify the Values to Use in the Query

1

Get all of the object type values:
%$lsaf _getAllTypes;

In the Isafgetalltypes data set, the relevant value is sas:file.

Get all of the actions for sas:file:

%$1lsaf getAuditActions(lsaf typeID=%str(sas:file),
sas_dsName=file actions);

In the file_actions data set, the relevant value is checkedOut.
Get a list of the columns that can be queried:
%$1saf_getQueryColumns (lsaf queryType=AuditEntryQuery) ;

In the Isafgetquerycolumns data set, the relevant values are userld, action, and
sourceTypeld.

Create the Input Data Set for the Query

1

Create a zero-observation data set with the variable metadata needed to create
the input data set:

22 Chapter 4 / Queries

%$lsaf getQueryTemplateDataset;
Create the input data set for the query:

data checkedoutFiles;
if 0 then set lsafGetQueryTemplateDataset;

* NOTE: Below, replace location with a ;

* valid repository location. The wildcard (*) selects all
subfolders. ;

recordType="CONSTRAINT"; columnClass="AuditEntry"; isCaseSensitive=0;

columnName="sourceLocation"; comparator="LIKE"; value="Iocation*";
output;

recordType="CONSTRAINT"; columnClass="AuditEntry"; isCaseSensitive=0;
columnName="action"; comparator="EQUAL"; value="checkedOut"; output;

* NOTE: Below, replace user identifier with a ;

* valid user identifier.;

recordType="CONSTRAINT"; columnClass="AuditEntry"; isCaseSensitive=0;

columnName="userId"; comparator="EQUAL"; value="user identifier";
output;

RecordType="LOGICAL OPERATOR"; ColumnClass=""; isCaseSensitive=0;
ColumnName=""; Comparator=""; Value="AND"; output;

* Constraints - DATE_RANGE;

recordType="CONSTRAINT RANGE"; columnClass="AuditEntry";
isCaseSensitive=0;

columnName="timestamp"; comparator="";

value="01MAR2020:00:00:00,31MAR2020:21:55:59"; output;
run;

Note: Replace location with a valid repository location. Replace user_identifier
with a valid user identifier.

Run the Query

1

2

Run the query:

%$1lsaf queryAuditEntries(lsaf queryDataSet=checkedoutFiles,

lsaf validatedDataSet=validate checkedoutFiles,

lsaf exportLocation=workspace,

lsaf exportPath=%str(/Users/user identifier/checkedoutFiles.csv),
lsaf overwrite=1);

In your workspace, open checkedoutFiles.csv and review the results.

Query Audit Records 23

Example 4: Find Details about the User Roles That
Were Created by a User

|dentify the Values to Use in the Query

Get all of the actions:
%$1saf getAuditActions (sas_dsName=file actions) ;

In the file_actions data set, the relevant value is roleAdded.

Note: roleAdded is available for custom contexts and several standard SAS
Life Science Analytics Framework objects. For this reason, Isaf_typelD was not
specified in the call to %lsaf_getAuditActions.

Get a list of the columns that can be queried:
%$1saf_getQueryColumns (lsaf queryType=AuditEntryQuery) ;

In the Isafgetquerycolumns data set, the relevant values are action and userld.

Create the Input Data Set for the Query

1

Create a zero-observation data set with the variable metadata needed to create
the input data set:

%$lsaf _getQueryTemplateDataset;
Create the input data set for the query:

data userRoles;
if 0 then set lsafGetQueryTemplateDataset;

* NOTE: Below, replace user identifier with a valid user identifier.;

recordType="CONSTRAINT"; columnClass="AuditEntry"; isCaseSensitive=0;

columnName="userId"; comparator="EQUAL"; value="user identifier";
output;

recordType="LOGICAL OPERATOR"; columnClass=""; isCaseSensitive=0;
columnName=""; comparator=""; value="AND"; output;

* Test to see roles have been added by user identifier;
recordType="CONSTRAINT"; columnClass="AuditEntry"; isCaseSensitive=0;
columnName="action"; comparator="EQUAL"; value="roleAdded";

output;

24 Chapter 4 / Queries

Note: Unlike the other examples, this one calls %LSAF_QUERYAUDITDETAILS.
This macro provides the details about attribute changes.

1 Run the query:

%$lsaf queryAuditDetails(lsaf queryDataSet=userRoles,

lsaf validatedDataSet=validate userRoles,

lsaf exportLocation=workspace,

lsaf exportPath=%str(/Users/user identifier/userRoles.csv),
lsaf overwrite=1);

2 In your workspace, open userRoles.csv and review the results.

Query the Recycle Bin

Overview

In the SAS Life Science Analytics Framework user interface, you can query the
recycle bin using simple queries. For more complex queries, you can use SAS
macros in a SAS session.

|dentify the Values to Use in the Query

1 Run %lsaf_getquerycolumns.

This macro creates a data set that contains all of the object properties that can
be queried. The parameter Isaf_querytype specifies the type of recycle bin object
to query.

2 Open the data set that was created in the previous step, and record the
columnName that you need for the query.

Query the Recycle Bin 25

You can specify multiple columnNames in a query.

Create the Input Data Set for the Query

1 Run %lsaf_getquerytemplatedataset.

This macro creates a zero-observation data set that contains the variable
metadata that is required to create the input data set for the query.

2 Create and run a DATA step that uses the values that you recorded in “Identify
the Values to Use in the Query” on page 24 to create a data set that is the query.

See Also

“Input Data Set” on page 12
“Validating the Input Data Set” on page 14

Run the Query

Run %lsaf_queryrecyclebincontainer, %lsaf_queryrecyclebinfile,
%lsaf_queryrecyclebinfileversion, %lsaf_queryrecyclebinfileversion, or
Y%lsaf_queryrecyclebinitem.

Each macro queries a specific type of recycle bin item. The macros validate and run
the query to produce a CSV file that contains the results.

See Also

“Running the Query” on page 14

“Query Macros” on page 15

26 Chapter 4 / Queries

Example 1: Find All ltems That Were Deleted after
a Specific Date and Time within a Context

|dentify the Values to Use in the Query

Get a list of all of the object properties that can be queried:
%$1saf_getQueryColumns (1saf querytype=%str(rbitem)) ;

In the Isafgetquerycolumns data set, the relevant values of columnName are path
and deletedDate.

Create the Input Data Set for the Query

1 Create a zero-observation data set with the variable metadata needed to create
the input data set:

%$lsaf getQueryTemplateDataset;

2 Create the input data set for the query:

data deleted after_datetime;
if 0 then set lsafGetQueryTemplateDataset;

* Records deleted by any user under the /SAS context after;
* Oct. 1, 2020;

RecordType = "CONSTRAINT"; ColumnClass = "RecycleBinItem";
isCaseSensitive=0; ColumnName = "path"; Comparator="LIKE";
Value="/SAS*";

output;

* Logical Operator;

RecordType = "LOGICAL OPERATOR"; ColumnClass = "";
isCaseSensitive=0; ColumnName = ""; Comparator=""; Value="AND";
output;

RecordType = "CONSTRAINT"; ColumnClass = "RecycleBinItem";

isCaseSensitive=0; ColumnName = "deletedDate";
Comparator="GREATER THAN OR EQUAL"; Value="010ct2020:00:00:00";
output;

run;

Query the Recycle Bin 27

Run the Query

1 Run the query:

%$lsaf queryrecyclebinitem(
lsaf querydataset=deleted after datetime,
lsaf validateddataset=validated deleted after datetime,
lsaf exportlocation=workspace,
lsaf exportpath=%str(/Users/user identifier/
deleted after datetime.csv),

lsaf overwrite=1

2 In your workspace, open deleted_after datetime.csv and review the results.

Example 2: Find All Unversioned SAS Data Sets
That Are Greater Than 100,000KB within a Context

|dentify the Values to Use in the Query

Get a list of all of the object properties that can be queried:
%$1saf_getQueryColumns (1saf querytype=%str(rbitem)) ;

In the Isafgetquerycolumns data set, the relevant values of columnName are path,
typelD, size, and version.

Create the Input Data Set for the Query

1 Create a zero-observation data set with the variable metadata needed to create
the input data set:

%$lsaf getQueryTemplateDataset;
2 Create the input data set for the query:
data unversioned ds_gt100k;

if 0 then set lsafGetQueryTemplateDataset;

* Unversioned SAS data sets with size > 100000 deleted by any user;
under the /SAS context;

28 Chapter 4 / Queries

RecordType = "CONSTRAINT"; ColumnClass = "RecycleBinItem";
isCaseSensitive=0; ColumnName = "path"; Comparator="LIKE";
Value="/SAS*";

output;

* Logical Operator;

RecordType = "LOGICAL OPERATOR"; ColumnClass = ""; isCaseSensitive=0;
ColumnName = ""; Comparator=""; Value="AND";
output;

RecordType = "CONSTRAINT"; ColumnClass = "RecycleBinItem";
isCaseSensitive=0; ColumnName = "typeId"; Comparator="EQUAL";
Value="sas:sasdataset";

output;

RecordType = "CONSTRAINT"; ColumnClass = "RecycleBinFile";
isCaseSensitive=0; ColumnName = "size"; Comparator="GREATER THAN";
Value="100000";

output;

RecordType = "CONSTRAINT"; ColumnClass = "RecycleBinFile";
isCaseSensitive=0; ColumnName = "version"; Comparator="EQUAL";
Value="-";
output;

run;

Run the Query

2

Run the query:

%$1lsaf queryrecyclebinfile (

lsaf querydataset=unversioned ds gtl100k,

lsaf validateddataset=val unversioned ds_gtl100k,

lsaf exportlocation=workspace,

lsaf exportpath=%str(/Users/user identifier/unversioned ds gt1l00k.csv),
lsaf overwrite=1);

In your workspace, open unversioned_ds_gt100k.csv and review the results.

Query the Recycle Bin 29

Example 3: Find All Files That Have More Than
Two Versions within a Context

|dentify the Values to Use in the Query

Get a list of all object properties that can be queried:
%$1saf getquerycolumns (lsaf querytype=rbfileversion);

In the Isafgetquerycolumns data set, the relevant values of columnName are path
and totalVersions.

Create the Input Data Set for the Query

1 Create a zero-observation data set with the variable metadata needed to create
the input data set:

%$lsaf getQueryTemplateDataset;
2 Create the input data set for the query:
data rbfiles_gt2vers;

if 0 then set lsafGetQueryTemplateDataset;

* Versioned records with total versions > 2 deleted by any user;
* under the /SAS context;

RecordType = "CONSTRAINT"; ColumnClass = "RecycleBinItem";
isCaseSensitive=0; ColumnName = "path"; Comparator="LIKE";
Value="/SAS*";

output;

* Logical Operator;

RecordType = "LOGICAL OPERATOR"; ColumnClass = ""; isCaseSensitive=0;
ColumnName = ""; Comparator=""; Value="AND";
output;

RecordType = "CONSTRAINT"; ColumnClass = "RecycleBinFileVersion";

isCaseSensitive=0; ColumnName = "totalVersions";
Comparator="GREATER THAN"; Value="2";
output;

run;

30 Chapter 4 / Queries

Run the Query

1 Run the query:

%$lsaf queryrecyclebinfileversion(

lsaf querydataset=rbfiles gt2vers,

lsaf validateddataset=validated rbfiles gt2vers,

lsaf exportlocation=workspace,

lsaf exportpath=%str(/Users/user identifier/rbfiles gt2vers.csv),
lsaf overwrite=1);

Note: %lsaf_queryrecyclebinfile provides information about both unversioned and
versioned files in the recycle bin that meet the criteria for a query. If a file is
versioned, only the information from the most recent file version is displayed.
%lsaf_queryrecyclebinfileversion provides information for all versions of a file in the
recycle bin that meet the criteria for a query.

Example 4: Find All Folders That Are Greater Than
200,000KB within a Context

|dentify the Values to Use in the Query

Get a list of all object properties that can be queried:
%$1lsaf getquerycolumns (lsaf querytype=rbcontainer);

In the Isafgetquerycolumns data set, the relevant values of columnName are path,
typelD, size.

Create the Input Data Set for the Query

1 Create a zero-observation data set with the variable metadata needed to create
the input data set:

%$lsaf getQueryTemplateDataset;
2 Create the input data set for the query:

data folders_gt200k;

Query the Recycle Bin 31

if 0 then set lsafGetQueryTemplateDataset;

* Folders deleted by any user with size > 200000 under the ;
* /SAS context;

RecordType = "CONSTRAINT"; ColumnClass = "RecycleBinItem";
isCaseSensitive=0; ColumnName = "path"; Comparator="LIKE";
Value="/SAS*";

output;

* Logical Operator;

RecordType = "LOGICAL OPERATOR"; ColumnClass = ""; isCaseSensitive=0;
ColumnName = ""; Comparator=""; Value="AND";
output;

RecordType = "CONSTRAINT"; ColumnClass = "RecycleBinItem";
isCaseSensitive=0; ColumnName = "typeId"; Comparator="EQUAL";
Value="sas:folder";

output;

RecordType = "CONSTRAINT"; ColumnClass = "RecycleBinContainer";
isCaseSensitive=0; ColumnName = "size"; Comparator="GREATER THAN";
Value="200000";
output;

run;

Run the Query

1 Run the query:

%$1lsaf queryrecyclebincontainer (

lsaf querydataset=folders gt200k,

lsaf validateddataset=validated folders_gt200k,

lsaf exportlocation=workspace,

lsaf exportpath=%str(/Users/user identifier/folders gt200k.csv),
lsaf overwrite=1);

2 In your workspace, open folders_gt200k.csv and review the results.

32 Chapter 4 / Queries

	Contents
	Audience
	Audience

	Installing the Macros
	Overview
	Requirements
	Install Macros on Microsoft Windows
	Verify the Installation

	SAS Life Science Analytics Framework Macros
	Introduction
	SAS Macro Return Codes
	Using the Macros
	Using the Ampersand Character (&) in URLs
	The Proper Case for Parameter Values
	Quoting Parameter Values

	Queries
	Overview
	Input Data Set
	Validating the Input Data Set
	Running the Query
	Global Macro Variables
	Query Macros
	General Syntax of the Query Macros
	Required Parameters
	Optional Parameters

	Query Audit Records
	Overview
	Identify the Values to Use in the Query
	Create the Input Data Set for the Query
	Run the Query
	Example 1: Find All Records of Successful Log On or Log Off
for a Single User
	Identify the Values to Use in the Query
	Create the Input Data Set for the Query
	Run the Query

	Example 2: Find All Records of the Contexts That Were Created
or Permanently Deleted by Several Users
	Identify the Values to Use in the Query
	Create the Input Data Set for the Query
	Run the Query

	Example 3: Find All of the Files That Were Checked Out by a
User from a Folder and Its Subfolders, within a Time Frame
	Identify the Values to Use in the Query
	Create the Input Data Set for the Query
	Run the Query

	Example 4: Find Details about the User Roles That Were Created
by a User
	Identify the Values to Use in the Query
	Create the Input Data Set for the Query
	Run the Query

	Query the Recycle Bin
	Overview
	Identify the Values to Use in the Query
	Create the Input Data Set for the Query
	Run the Query
	Example 1: Find All Items That Were Deleted after a Specific
Date and Time within a Context
	Identify the Values to Use in the Query
	Create the Input Data Set for the Query
	Run the Query

	Example 2: Find All Unversioned SAS Data Sets That Are Greater
Than 100,000KB within a Context
	Identify the Values to Use in the Query
	Create the Input Data Set for the Query
	Run the Query

	Example 3: Find All Files That Have More Than Two Versions
within a Context
	Identify the Values to Use in the Query
	Create the Input Data Set for the Query
	Run the Query

	Example 4: Find All Folders That Are Greater Than 200,000KB
within a Context
	Identify the Values to Use in the Query
	Create the Input Data Set for the Query
	Run the Query

