Traditional
Multitasking Using

Mainframe ‘C’

Don Poitras

SAS/C Development
SAS Institute
sasdtp@sas.com

Share 1998 Winter Technical Conference
Session 5957

*Permission is granted to SHARE Inc. to copy, reproduce or republish
this document in whole or in part for SHARE activities only.

Multi-tasking on MVS

SAS/C Multi-tasking features
Event-driven programming
Sample program

Pitfalls to avoid

Multi-tasking on MVS

Multi-threading vs. Multi-tasking
Assembler macros and control blocks
Serialization and reentrant coding

Multi-threading vs. Multi-tasking

Multi-threading

CICS and Windows 3.1

All threads share heap,
stack and PSW.

“Cooperative” multitasking.

One task can halt entire
program.

Multi-tasking

MVS, WIn/NT and OS/2

Each task has it's own
PSW, stack and abillity to
get private heap.

“Preemptive” multitasking.
The OS gives each task a
time slice. In multi-
processing, each task
could be running
simultaneously.

Assembler macros and
control blocks

« Macros
0 ATTACH/DETACH - start/stop a subtask
0 WAIT/POST - wait for, or signal an event
0 ENQ/DEQ - reserve or release a resource
= Control blocks
0 ASCB - Address Space Control Block
0 TCB - Task Control Block

0 RB - Request Blocks
1 PRB - Program Request Block
7 IRB - Interrupt Request Block
1 SVRB - SuperVisor Request Block for SVC routines

Serialization and reentrant
coding
= Using the CS and CDS instructions.

0 Any global variable able to be updated by more
than one subtask at the same time must be serially
updated by some locking mechanism.

= The ‘RENT’ compiler option
0 All static and extern variables are __ rent by default.

0 A PRV (psuedo register vector) is allocated for
each load module. The same module attached
twice would get two PRV'’s; each subtask see’s only
It’'s own static and extern variables.

= Marking a load module RENT. One copy loaded
per address space. Better performance if in LPA.

SAS/C Multi-tasking
Features

"Wrapper" functions

0 ATTACH/DETACH

0 ENQ/DEQ

0 POST/WAIT (WAIT1 or WAITM)
0 TPUT/TGET

INDEP programs and the SPE
Environment

0 STIMER/STIMERM

Event-driven
programming

Message passing
Message queueing

A LIFO queue can be added to by multiple tasks and read by a single receiver
by using the CS instruction.

pMsgPrev pMsgPrev pMsgPrev pMsgPrev pMsgPrev

O\ V/\ V/\ ¥ ¥ X v
Manny Moe Jack Kookla Fran Ollie

pQueue->pMsgLast

[* put the message on the gueue */
retry:
_ldregs(R1 | R3 5,

&pQueue->pMsgLast,
pMsg setof(MSGBLOCK, pMsgPrev),

pMsg);

L(2, 0, 0+b(1)); /*load old end pointer */

AR(3, 15); [* point to pMsgPrev of pMsg */

ST(2, 0, 0+b(3)); /* pMsg->pMsgPrev = pQueue->pMsgLast */
CS(2, 15, 0+b(1)); /* pQueue->pMsgLast = pMsg */

if (_cc() !=0)

{

goto retry;

}

However, a FIFO queue is more useful. Create a doubly-linked list by following the
LIFO chain to the first message on the queue, filling in the pMsgNext as you go.

pMsgPrev pMsgPrev pMsgPrev pMsgPrev pMsgPrev

0 v/\ v/\ v/\ ¥
Manny er LJj:‘k @Ia

pMsgNext pMsgNext pMsgNext

pMsgPrev

V/\ A J /(VO
Fran Ollie Msghext

pMsgNext

pMsgNext

pQueue->pMsglLast

When reading the queue, the messages can be
taken off without using CS until the end of the
original FIFO queue is reached. If no additional
messages have been added in the meantime, use
pQueue->pMsgFirst CS to set the pQueue->pMsgLast pointer to 0. If
pMsgLast has been changed, simply create a
new FIFO chain and take off the new message.

Sample SAS/C
multi-tasking program

This demo program illustrates some of the facilities available to
application programmers to implement an event-driven multi-
tasking application. Three generic sub-tasks and a special-use
“timer” subtask are started and sent a few messages. After
waiting for these messages to be processed, the main task then
asks (politely) each of the subtasks to terminate. In the event
that one or more subtasks does not respond within a reasonable
period, they are shutdown forcibly.

In the following slides, we examine some details of the
processing.

The “timer” subtask is started (attached.)

IAttachRC = SubAttach(&pAnchor->stTimerTask, "SHRTIME");
if (IAttachRC != 0)
{

printf("SubAttach of timer failed\n");

exit(EXIT_FAILURE);

}

[H mmm e e +

| SubAttach() is used to attach a sub-task. |
o */

static int SubAttach(PTASK pTask, PSZ pucModule) {
int rc;
sprintf(pTask->stTaskArg.ucParm,"%08X =u", pTask);
pTask->stTaskArg.sLen = 11;
pTask->pstTaskArg = (void *) (0x80000000 |
(unsigned) &pTask->stTaskArg);
rc = ATTACH(&pTask->pTaskTCB,
_Aep, pucModule,
_Aecb, &pTask->ulTaskEndECB,
_Aparam, &pTask->pstTaskArg,
_Aend);
return (rc); }

All parms passed to a
subtask must not be
on the stack or
extern/static variables.

Messages are sent to the “timer” task and the generic tasks.

stMsg.uiMsg = TIMERREQ);
time(&stTimerRequest.dWakeUpTime);
stTimerRequest.dWakeUpTime +=5; /* send the timer
message in 5 seconds */
stTimerRequest.pTask = pAnchor->pSubTaskChain;
memcpy(stMsg.ucData, &stTimerRequest, sizeof(TREQUEST));
WriteQueue(&pAnchor->stTimerTask.stQueue,
4+sizeof(TREQUEST), (PUCHAR) &stMsQ);

[H o mm e e e +
| send a few messages to each generic subtask |
o */
pTask = pAnchor->pSubTaskChain; .
for (i=0: i < NUM_TASKS: i++) Note that the message is
{ copied, not passed to the
ntj; _ _ recipient.

for (j=0x100; j < 0x103; j++)

{

stMsg.uiMsg = |;
WriteQueue(&pTask->stQueue,
4, (PUCHAR) &stMsgQ);

}
pTask = pTask->pNextTask;

}

Limit the storage used by the subtask.

int _stack = 12288;

int _heap = 8192;
extern int _stkabv = 1;
extern int _stkrels = 1;

Limiting the size of global memory that all subtasks can
access will reduce future headaches. Here, all global
memory is accessed by the pAnchor pointer.

typedef struct ANCHOR

{
UCHAR ucEye(|8|); /* eyecatcher - "ANCHOR " */
PTASK pSubTaskChain;/* points to first subtask cb on chain*/
QUEUE stMainQueue; /* message queue hdr for main task */
TASK stTimerTask; /* Timer subtask info */
ULONG ulSemLog; /* print log mutex semaphore */
union
{ double dCDSAIlign; [* used to force doubleword alignment */
struct
{
PMSGBLOCK pMsgFirst; /* addr of first message in free pool*/
ULONG ulRefNum; /* number of references to the pool */
} stCDS;
} uCDS;
PMSGBLOCK pFreePoaol; [* points to the start of free pool*/
ULONG ulFree; [* free messages in the pool */

} ANCHOR, *PANCHOR;

pTask = (PTASK) strtoul(argv[1l], &pStopchar, 16);
pAnchor = pTask->pAnchor;

The subtask mainline is a “message loop”.
while (1)
{
ReadQueue(&pTask->stQueue,
&ulDatalength,
(PUCHAR) &stMsg);

switch (stMsg.uiMsg)
{
case SHUTDOWN:
{ sprintf(buffer,"Subtask #%i, shutting down",
pTask->iTaskNum);
Log(buffer);
return (EXIT_SUCCESYS); }

case TIMERPOP:
{ sprintf(buffer,"Subtask #%i, received timer pop",
pTask->iTaskNum);
Log(buffer);
break; }

default:
{ sprintf(buffer,"Subtask #%i, unknown message received %08x",
pTask->iTaskNum, stMsg.uiMsg);
Log(buffer);
break; }}}

The “timer” subtask uses the SPE interface. A “minimal” C environment is created
to reduce storage requirements. The timer program waits for requests from other
tasks. If an OS timer (STIMER) has been started, the subtask must wait for either the
STIMER to pop, or another timer request to be received.

[* set first ecb to wait on. This is the ReadQueue ecb */
aulECBLIist[0] = &pTask->stQueue.uCDS.stCDS.UlQECB;
/[* set the stimer ecb in the wait list, and mark it as the end */
aulECBList[1] =

(PECB) ((ULONG) &ulStimerECB | (ULONG) 0x80000000);

pStimer = bldexit(&StimerExit, ASYNCH);

ulStimerECB = O; /* initialize the STIMER ecb */

pTimerChain = O; /* initialize the timer chain */

while (1)

{ /* wait for a message or a timer pop */
WAITM(1, aulECBLIst);

if (IbLowestTimeSet) continue;
ulTimeToWait = 100 * (dLowestTime - dCurTime);
STIMER(REAL, pStimer, BINTVL, &uITimeToWait);
}

static void StimerExit(void)

{
POST (&ulStimerECB, 0);

}

Writing to a log file can cause problems if two subtasks attempt to write
at the same time. A mutex semaphore can serialize the access to the file.

[* get the "Print Log Lock" before opening the file */
Lock(&stLogLockElement, &pAnchor->ulSemLog);
pstLogDCB = osdcb("log",

"Irecl=133,dsorg=ps,recfm=va,bufno=1,ncp=1",
0, 0);

osopen(pstLogDCB, "output", 0);

osput(pstLogDCB, abLine, strlen(abLine));

osclose(pstLogDCB, "disp");

[* release the lock. If other subtasks are waiting, the last
one in will be posted to continue */

Unlock(&pAnchor->ulSemLog);

This code is taken from the ESA/390 Principles of Operation
void Lock(PLOCK pLock, PULONG pQueue)

{
pLock->ulLockECB = 0; /* Clear our lock element ECB */
_Idregs(R1 | R2, /* Load element and header address */
pLock, pQueue);

LNR(O, 1); [* Force RO negative as a flag */

XR(3, 3); [* Clear R3 for use in the CS instruction*/

BASR(14, 0); /* set address for retry */

CS(3, 0, 0+b(2)); /* Set the header to a negative value
if the current header is 0 */

if (_cc() ==0)

{

return; [* If successful, exit */

}

_ldregs(0); [* Tell the compiler we're starting
an assembler sequence */

ST(3, 0, 4+b(1)); [* Save the address of the prior locker
in my lock element */

CS(3, 1, 0+b(2)); /* Store our element address into the
header (this time it's not negative)*/

LA(3, 0, 0+b(0)); /* Clear R3 in case we need to try the
first CS again. */

BCR(7, 14); /[* If the store was interrupted, go back

to the first CS */
WAIT1(&pLock->ulLockECB);

void Unlock(PULONG pQueue)

{
PECB pEcb = 0;
_ldregs(R2, pQueue); [* Load queue header address */
L(1, 0, 0+b(2)); [* Load the contents of the header */
BASR(14, 0); /* set address for retry */
LTR(1, 1); [* Does the header contain a negative
value? */
BC(4, 0, flabel(1)); /* Yes, free the header and continue */
L(O, O, 4+b(1)); /* Load the "Last in" element address */
CS(1,0,0+b(2)); [* Save the "Last in" element address
in the header */
BCR(7, 14); [* If the store was interrupted, try
again */

_stregs(R1, &pEcbh); [* Set ECB of next waiter on queue */
POST(pEch, 0);

return;
_label(2);

_ldregs(0); /* Tell the compiler we're starting
an assembler sequence */

XR(0, 0); [* Clear for CS */

CS(1, 0, 0+b(2)); /* Set header to 0 */

BCR(7, 14); /[* If the store was interrupted, start
over */

return;

At shutdown, care needs to be taken to avoid getting stuck
waiting for all subtasks to complete.

| Wait for all subtasks to end. Detach the TCBs when the |
| shutdown ecbs are posted. |

o */

while (1)

{

int bWaitSomeMore;
signal(SIGALRM, &TimeAlarm);/* Catch SIGALRM signal. */
alarm(10); /* Wait max. ten seconds for some

task(s) to end */
sigemptyset(&stNoSigs); /* Set no sigs blocked for suspend. */
/* wait for one or more shutdown ecbs to be posted, or for the
alarm signal */
ecbsuspend(&stNoSigs, 1+NUM_TASKS, pShutdownECBS);
alarm(0); [* Cancel alarm. */
signal(SIGALRM, SIG_DFL); /* Restore default alarm handling. */

Some pitfalls to avoid

« Shared resource conflicts
0 Use ENQ/DEQ or WAIT/POST locks.
0 Beware the deadly embrace.
= Common abends
0 0C4 - Subtask passed bad pointer.
0 23E - Bad TCB pointer in DETACH.
0 13E/33E - Subtask detached before it returned.

0 43E - ECB specified at ATTACH was invalid when
the task ended.

0 CO03 - Subtask ended without closing DCB.

Further information

= Information about SAS/C
0 http://www.sas.com/software/sas_c/

0 http://www.sas.com/software/sas_c/whitepapers/doc/
rv2ch4.html#lr2multi

- IBM Manuals

0 http://ppdbooks.pok.ibm.com:80/cgi-
nin/bookmgr/bookmgr.cmd/books/IEA1A702

0 http://ppdbooks.pok.ibm.com:80/cgi-
nin/bookmgr/bookmgr.cmd/books/IEA1A802

« Questions or comments for me
0 mailto:sasdtp@sas.com

