H SAS/C’ Compiler
Interlanguage
Communication
Feature
User’s Guide

/”/® SAS Institute Inc.

B SAS/C Compiler
Interlanguage
Communication

Feature User’s
Guide

Release 4.00

)/ /4

SAS Institute Inc.
SAS Circle [J Box 8000
Cary, NC 27512-8000

The correct bibliographic citation for this manual is as follows: SAS
Institute Inc. SAS/C® Compiler Interlanguage Communication Feature
User’s Guide, Cary, NC: SAS Institute Inc., 1989. 260 pp.

SAS/C® Compiler Interlanguage Communication Feature User’s
Guide

Copyright © 1989 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-55544-323-0

All rights reserved. Printed in the United States of America. No part
of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of
the publisher, SAS Institute Inc.

1st printing, February 1989
2nd printing, September 1989

Note that text corrections may have been made at each printing.

The SAS® System is an integrated system of software providing
complete control over data management, analysis, and presentation.
Base SAS software is the foundation of the SAS System. Products
within the SAS System include SAS/ACCESS® SAS/AF®
SAS/ASSIST® SAS/DMI® SAS/ETS® SAS/FSPP SAS/GRAPHP
SAS/IML® SAS/IMS-DL/I? SAS/OR® SAS/QC? SAS/REPLAY-CICSP
SAS/SHAREQ SAS/STAT® SAS/CPE;" SAS/DB2}" and SAS/SQL-DS™
software. Other SAS Institute products are SYSTEM 2000®

Data Management Software, with basic SYSTEM 2000, CREATE;"
Multi-User;" QueX;" Screen Writer™ software, and CICS interface
software; NeoVisuals™ software; SAS/RTERM® software; SAS/C® and
SAS/CX™ compilers. SAS Training® SAS Communications® SAS Views®
and the SASware Ballot® are published by SAS Institute Inc. Plink86®
and Plib86® are registered trademarks of Phoenix Technologies Ltd.
All other trademarks above are registered trademarks or trademarks,
as indicated by their mark, of SAS Institute Inc.

A footnote must accompany the first use of each Institute registered
trademark or trademark and must state that the referenced trademark
is used to identify products or services of SAS Institute Inc.

The Institute is a private company devoted to the support and further
development of its software and related services.

Page 3

wWoooNuuww

11

11
12
12
13
15
16

19
19
19
20
25
29
35

37
37
38
38
38
39
40
41
41
44
44
45
46

Contents

List of Examples

List of lllustrations
List of Tables

Credits

How to Use This Book

Part 1 Using SAS/C ILC

Chapter 1 Introduction to Interlanguage
Communication

Introduction

Terms to Know

Advantages of Interlanguage Communication
Overview

Calling C from Another Language

Calling Another Language from C

Linking Multilanguage Programs

Chapter 2 Multilanguage Framework Management
Introduction

Terms to Know

Framework Components

Framework Creation

Framework Coexistence

Framework Termination

Error Handling

Chapter 3 Communication with Other Languages
Introduction

Terms to Know

Data Types and Data Formats

Data Sharing

C Programming Considerations

Linking Considerations

Chapter 4 Communication with FORTRAN
Introduction

Versions Supported

Framework Considerations
FORTRAN Data Types

Passing Data to C from FORTRAN
Returning Data to FORTRAN from C
Examples: Calling C from FORTRAN
Passing Data to FORTRAN from C
Returning Data to C from FORTRAN
Data Type Conversion Macros
Examples: Calling FORTRAN from C
Error Handling Considerations

iv Contents

46 External Data Sharing Considerations
47 Linking Considerations
47 Hints

49 Chapter 5 Communication with COBOL
49 Introduction

49 Versions Supported

50 Framework Considerations

50 COBOL Data Types

50 Passing Data to C from COBOL
52 Returning Data to COBOL from C
52 Examples: Calling C from COBOL
53 Passing Data to COBOL from C
55 Returning Data to C from COBOL
55 Examples: Calling COBOL from C
56 Restrictions

57 Chapter 6 Communication with PL/I
57 Introduction

58 Versions Supported

58 PL/I Data Types

59 Passing Data to C from PL/I

60 Returning Data to PL/I from C

61 Examples: Calling C from PL/I

62 Passing Data to PL/I from C

65 Returning Data to C from PL/I

65 Data Type Conversion Macros

70 Examples: Calling PL/I from C

71 Error Handling Considerations

71 External Data Sharing Considerations
72 Linking Considerations

72 Restrictions

73 Hints

75 Chapter 7 Communication with Pascal
75 Introduction

76 Versions Supported

76 Pascal Data Types

77 Passing Data to C from Pascal

81 Returning Data to Pascal from C

81 Examples: Calling C from Pascal

83 Passing Data to Pascal from C

86 Returning Data to C from Pascal

87 Data Type Conversion Macros

89 Examples: Calling Pascal from C

91 External Data Sharing Considerations
91 Restrictions

92 Hints

95 Chapter 8 Linking Multilanguage Programs with the
ILCLINK Utility

96 Introduction

96 Input File

96 Output Files

97 ILCLINK Options

97 Language Codes

98
101
110
113
115
115
117
123
123
124
125

127
127
127
128
131
131
132

135
135
135
136
137
137
137
138

141
141

155
155

159
159
159
160

163
163
163
164
164
165
165
166

167

167
167
168
169
170

Contents

ILCLINK Processes

Control Statements

Usage Notes

Running ILCLINK under TSO

Running ILCLINK under CMS

Running ILCLINK under OS-Batch

Examples Using ILCLINK Control Statements
Interlanguage Communication Support Routines
Examples Using ILC Support Routines
Default Data Set Allocations under TSO
References

Chapter 9 Debugging Multilanguage Programs
Introduction

ILC User ABENDs

Other ABENDs

Incorrect Results

Incorrect File Output

Miscellaneous Tips

Chapter 10 Advanced Topics
Introduction

Dynamic Loading in a Multilanguage Program
MVS/XA Addressing Mode Considerations
Reentrancy

Multilanguage Signal/Condition Handling
Coprocesses in a Multilanguage Program
Using More Than Two Languages

Chapter 11 ILC Framework Manipulation Routines
Introduction

Chapter 12 Using Packed Decimal Data in C
Introduction

Chapter 13 € Varying-Length String Macros
Introduction

Varying-Length String Macro Descriptions

Examples Using Varying-Length String Macros

Part 2 Extending SAS/C ILC

Chapter 14 Using ILC with a User-Supported Language
Introduction

Language Names

Creating and Deleting the User-Supported Language Framework
Creating and Deleting the C Framework

Calling C from a User-Supported Language

Calling a User-Supported Language from C

Using ILCLINK with a User-Supported Language

Chapter 15 User-Supported Language Implementation
Background

Introduction

Implementation Tasks

Language Names and Routine Names

Overview of User-Language Support Routines

Processes and Process Communication

vi Contents

173 Chapter 16 Implementing ILC with a User-Supported
Language

173 Introduction

174 ILC Control Flow

182 Updating the Supported Language Table

183 Implementing the Support Routines

214 Miscellaneous User-Supported Language Issues

220 Documenting Your Interface

Part 3 Appendices

225 Appendix 1 ILC Library Diagnostic Messages
225 Introduction

231 Appendix 2 ILCLINK Diagnostic Messages
231 Introduction

243 Function Index
245 Index
263 Your Turn

118
119
120
121
122

Examples

8.1
8.2
8.3
8.4
8.5

Sample OS and TSO ILCLINK Program

Sample CMS ILCLINK Program

Allocating DDnames for ILCLINK under TSO
Allocating DDnames for ILCLINK under CMS
Allocating DDnames for ILCLINK under OS-Batch

14
170
171
174
175
176
177
178
179
180
181
187
189
191
203

lllustrations

Figures

2.1
15.1
15.2
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

16.10
16.11
16.12

Multilanguage Save Area Chain Example
Process Communication

Process Communication Example

Non-C Process Initialization

C Process Initialization

Calls from a Non-C Routine to a C Function
Calls from a C Function to a Non-C Routine
Normal Termination of the C Framework
Normal Termination of the Non-C Framework
Unexpected Termination of the C Framework
Unexpected Termination of the Non-C Framework
The Prep-routine

The Xform-routine

Argument List for the Xform-routine

ILCP Structure

Tables

38 4.1 FORTRAN-C Corresponding Data Types
39 4.2 Argument Types for Calls from FORTRAN to C
42 4.3 Argument Types for Calls from C to FORTRAN
50 5.1 COBOL-C Corresponding Data Types
51 5.2 Argument Types for Calls from COBOL to C
53 5.3 Argument Types for Calls from C to COBOL
58 6.1 PL/I-C Corresponding Data Types
59 6.2 Argument Types for Calls from PL/I to C
63 6.3 Argument Types for Calls from C to PL/I
76 7.1 Pascal-C Corresponding Data Types
78 7.2 Argument Types for Calls from Pascal to C
83 7.3 Argument Types for Calls from C to Pascal
97 8.1 ILCLINK General Options
98 8.2 Language Codes
102 8.3 Default Entry Points
124 8.4 Default Data Set Size Values
169 15.1 ILC Support Routines
231 A2.1 Severity Levels and Return Codes

Credits

Publication Credits

Composition

Graphics
Proofreading

Technical Review

Writing and Editing

Software Credits

Gail Freeman, Pat Gervason,
Kelly Godfrey, Pam Troutman,
Penny Wiard

Ginny Matsey

Reid J. Hardin, Susan H. McCoy,
Philip R. Shelton, Toni P. Sherrill,
Michael H. Smith, Helen F. Weeks,
John M. West, Susan E. Willard

Twilah K. Blevins, Oliver Bradley,
Anne Corrigan, Mark K. Gass,
Jodie M. Gilmore

Ingrid Ammondson, Alan Beale,

Rick V. Cornell Jr., Jodie M. Gilmore,
Tim P. Hunter, Gary R. Meek,

Curtis A. Yeo

Many people have contributed to the SAS/C compiler interlanguage
communication feature. Principal developers are listed below by

product:

Design and
Implementation

ILCLINK Utility
Pascal Support

Alan Beale, Oliver Bradley

Tim P. Hunter

Ingrid Ammondson

We owe a great debt to all of our users who have made suggestions
for product improvements and to those who have reported bugs.

TESTING AND TECHNICAL SUPPORT:

Good testing and technical support are a vital ingredient of a quality
software product. SAS/C ILC would not have been possible without

those listed below:

Ingrid Ammondson
Twilah K. Blevins
Karen E. Chacko
Bob Patten Jr.

xiv

Part 1

How to Use This Book

The following sections provide an overview of this book, including its
purpose and organization, what you need to know, a reading path for
you to follow, some additional documentation you may want to have
available, and an explanation of the typographical conventions used in
the text. '

Purpose

This book documents the Interlanguage Communication (ILC) feature
of SAS/C software, Release 4.00. With ILC you can write programs
that use C and one or more other high-level languages (such as
FORTRAN, COBOL, PL/I, or Pascal) at the same time. Multilanguage
programs are highly flexible because you can use each language to do
what it does best. For example, C is good for numerical methods,
while COBOL is good for text processing. However, such programs
are more complex than single-language ones. This book explains how
to deal with these complexities.

What You Need to Know

To use this book effectively, you must be familiar with C and at least
one other language (usually FORTRAN, COBOL, PL/I, or Pascal).
Familiar implies that you know how to compile, link, and execute C
programs and programs written in the other language, and that you
know the various data types and calling conventions (call by
reference, call by value, and so on) used by each language. You
should also know how your operating system (TSO, CMS, or OS-batch)
stores files, how to specify compiler options, and how to issue system
commands. This level of experience is sufficient for most readers. If
you intend to write your own interfaces to user-supported languages
(those languages not supported directly by SAS/C ILC), you need an
even greater knowledge of the languages and your operating system.

Organization

This book has two parts. Part 1 gives background information on
interlanguage communication and documents the use of ILC with the
four standard high-level languages (FORTRAN, COBOL, PL/I, and
Pascal). Part 2 discusses using ILC with user-supported languages.

Part 1, “Using SAS/C ILC,” presents general background information
about interlanguage communication and then moves on to the details
of using ILC with each of the four supported languages (FORTRAN,

COBOL, PL/I, and Pascal). Included in Part 1 are chapters of overall

xvi

How to Use This Book

applicability, such as instructions for linking and debugging
interlanguage applications.

Chapters 1-3

Chapters 4-7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12
Chapter 13

give an overview of interlanguage
communication. These chapters include a Terms
to Know section, which lists terms in the chapter
that are new or ambiguous.

discuss the details of using ILC with FORTRAN,
COBOL, PL/I, and Pascal, respectively.

discusses in detail linking multilanguage
programs with the ILCLINK utility under TSO,
CMS, and OS-batch.

discusses debugging multilanguage programs. It
includes a list of common mistakes and
explanations of common diagnostic messages.

covers advanced topics for readers who need to
use unusual features of SAS/C software or of
other languages in their multilanguage programs.

is a reference chapter for ILC framework
manipulation routines, including synopses,
descriptions, and examples.

addresses the use of packed decimal data in C.

discusses the use of varying-length string macros
in C.

Part 2 In addition to supporting communication with FORTRAN, COBOL,
PL/1, and Pascal, the SAS/C ILC feature can be used to communicate
with other, less widely used languages. Part 2, “Extending SAS/C
ILC,” describes how to extend SAS/C ILC to support another
language. For example, a site with an Ada compiler can extend ILC so
that calls can be made between Ada and C. Each chapter in this part
of the book is described below.

Chapter 14

Chapter 15

Chapter 16

discusses how to use an interface to a user-
supported language. In addition to this chapter,
users need to refer to the documentation
produced by the implementor of the interface to
the language in order to use it effectively.

Note that the interface implementor should
also read this chapter for a complete
understanding of how the interface will be used
and of the documentation required.

discusses on a conceptual level implementing ILC
with a user-supported language. This chapter
gives the implementor a basic understanding of
how SAS/C ILC works before the implementor
moves on to Chapter 16, which is more detailed.

discusses in detail implementing ILC with a user-
supported language. Because the material in this
chapter is complex, the reader must have an
expert understanding of the language and of
SAS/C ILC.

Appendices

How to Use This Book

Appendix 1 lists the ILC run-time messages with their causes
and possible resolutions.

Appendix 2 lists the ILCLINK diagnostic messages with their
causes and possible resolutions.

Suggested Reading Path

Read Chapters 1 through 3 thoroughly before reading anything else.
These chapters provide the necessary background for using the SAS/C
ILC feature.

Read Chapters 4 through 7, 10, 12, and 13 as necessary, depending
on which language you use and what you want to accomplish with
your multilanguage application. If you are using or implementing a
user-supported language interface, you should still read at least one of
Chapters 4 through 7 to see how ILC works.

Read Chapter 8 before linking your multilanguage program. This
chapter discusses the ILCLINK utility in great detail and has many
helpful examples for each operating system.

Read Chapter 9 before executing your program. This chapter points
out many common ILC programming errors. By reading it before you
run your program, you can prevent much frustration and anxiety.

Refer to Chapter 11 as necessary when you create and terminate
execution frameworks.

Read Chapter 14 if you are using a user-supported language. This
chapter will start you in the right direction, although it does not
discuss a specific language in detail. Before reading this chapter, you
should read Chapters 1 through 3, 8, 9, and at least one of Chapters 4
through 7.

Read Chapters 15 and 16 if you are implementing a user-supported
language interface. These chapters show you how to implement and
document correctly the interface for your users. Before reading these
chapters, you should read Chapters 1 through 3, 8 through 14, and at
least one of Chapters 4 through 7.

Other Useful Documentation

As you use the SAS/C ILC feature, it will probably be helpful to have
additional documentation at hand. Below is a list of books you may
want to have available.

0 Technical Report C-106, Changes and Enhancements to the SAS/C
Compiler, Release 4.00

SAS/C Compiler and Library User’s Guide

SAS/C Library Reference, Volume 1

SAS/C Library Reference, Volume 2

SAS/C Source Level Debugger User’s Guide

IBM® manual, System/370 Principles of Operation (GA22-7000)
a language reference guide for each language you use

a programmer’s reference guide for each language you use

a reference guide for your operating system.

oooooooo

IBM is a registered trademark of International Business Machines Corp., Armonk, NY.

xvii

xviii

How to Use This Book

Typographical Conventions

Certain typefaces represent special types of information in the text.
The list below demonstrates these.

bold indicates an important word or concept.

code indicates the item is specific to the C language or
a C program. Note that C terms appearing in
headings are not in code.

italic type indicates a term that is being defined or
emphasizes an important word in a sentence.

B Part 1

Chapters

Using SAS/C ILC

1 Introduction to Interlanguage Communication
2 Multilanguage Framework Management

3 Communication with Other Languages

4 Communication with FORTRAN

5 Communication with COBOL

6 Communication with PL/I

7 Communication with Pascal

8 Linking Multilanguage Programs with the ILCLINK Utility
9 Debugging Multilanguage Programs

10 Advanced Topics

11 ILC Framework Manipulation Routines

12 Using Packed Decimal Data in C

13 C Varying-Length String Macros

—

Part 1 presents in Chapters 1 through 3 general information about
interlanguage communication. Chapters 4 through 7 describe using
SAS/C ILC with the supported languages (FORTRAN, COBOL, PL/I,
and Pascal). Chapters 8 through 13 are of general applicability,
including discussions of linking and debugging multilanguage
programs, advanced topics, reference chapters on framework
manipulation routines, and use of packed decimal data and varying-
length string macros.

If you plan to use SAS/C ILC with only the supported languages,
this part is all you need to read.

Introduction to
Interlanguage
Communication

Introduction
Terms to Know
Advantages of Interlanguage Communication
Overview
5 Execution Frameworks
6 Data Formats and Communication
Calling C from Another Language
Calling Another Language from C
Linking Multilanguage Programs

g ww

© 0N

introduction

This chapter introduces the four major components of interlanguage
communication:

O execution frameworks

O data formats and communication

O language calls, both from another language to C and from C to
another language

O linkage of multilanguage applications.

It is important that you grasp these fundamental principles of
interlanguage communication before going on to create and run a
multilanguage application.

Terms to Know

This section defines terms you should know before reading the
chapter. Cross-references are given in italics.

argument
a variable or expression that is passed from one routine to
another; also called a parameter.

call by reference
a method of passing an argument between routines, where the
location of the argument is passed and the called routine may
change its value. A copy of the argument is not created. It is
also called “pass by reference.” Most high-level languages
other than C use this technique for passing arguments.

call by value
a method of passing an argument between routines, where the
calling routine creates and passes a temporary copy of the
argument. Processing of this copy does not affect the actual
value. It is also called “pass by value.” C uses this technique
to pass arguments to other C functions.

data format
the physical representation of a data type.

4 Chapter 1

data type
a set of values, together with a set of operations defined on
those values; it is usually language specific.

data type conversion macro
ILC predefined macro that assists you in passing certain types
of data, such as arrays, character strings, and bit data, to
PL/I, FORTRAN, or Pascal.

environment
see execution framework.

execution framework
a collection of data and run-time library routines that support
the execution of code.

framework
see execution framework.

framework switch
an action performed by the SAS/C library when one language
calls another; the calling language’s execution framework is
made inactive, and the called language’s execution framework
is made active.

function
a routine written in C to perform a specific task, which may
return a value to the function’s caller. Functions that do not
return a value are void functions.

FUNCTION
a routine that returns a value or result to its caller. This term
is taken from FORTRAN, but it is used in this book for value-
returning routines written in any high-level language.
high-level language
a programming language that is independent of a machine-
specific instruction set. A single high-level language statement
can stand for and execute many machine instructions. C,
FORTRAN, COBOL, PL/I, and Pascal are examples of high-
level languages; assembler language is not. Note that to be
used with SAS/C ILC, a high-level language must have a
library and a framework.

HLL function pointer
a pointer to a function that is in a language other than C or
assembler.

routine
a general term for body of code that performs a specific task,
written in some programming language. A routine written in
C is called a function in this book.

run-time library
a collection of routines that can be linked with programs in a
particular programming language. These routines perform
functions such as memory management, error handling, 1/0,
and string handling, plus functions unique to a particular
language. Each language has its own unique run-time library,
and a multilanguage program requires the use of several.

Execution
Frameworks

Introduction to Interlanguage Communication 5

subroutine
a general term for a routine that is called from another
routine. This book uses subroutine to describe both C
functions and non-C routines.

SUBROUTINE
a routine that returns no value or result to its caller. This
term is taken from FORTRAN, but it is used in this book for
routines in any high-level language.

void function
a C function that does not return a value to its caller.

Advantages of Interlanguage
Communication

It is often desirable to combine routines that are written in several
programming languages into a single program. Doing so enables you
to

0O use existing subroutines or subroutine libraries from one language
in another language

O write the parts of a program in the language most natural for that
application, for instance, writing report generation routines in
COBOL

O convert an application gradually from one language to another.

The interlanguage communication support provided by SAS/C
software facilitates the development of programs that combine C with
other high-level languages. Communication with FORTRAN, COBOL,
PL/1, and Pascal is supported. In addition, a site can write its own
support for other languages.

Note that this book does not describe communication between C and
assembler language. This is much simpler than communication
between C and high-level languages, and is described in the SAS/C
Compiler and Library User’s Guide.

Overview

Developing and debugging a multilanguage program is rarely as
simple as a program involving only a single language. The goal of the
SAS/C interlanguage communication support is to minimize the
programming difficulties and reduce the detailed knowledge required
to create a robust multilanguage program. In particular, there should
be no need to write assembler language interfaces or to understand
the internal details of another language, except for its data type
representations.

There are two reasons that interlanguage calls require more effort
and care in coding than corresponding calls in the same language.
Different languages have different execution frameworks, and different
languages have different conventions for storing and transferring data.

As a general rule, successful execution of code written in a high-level

language requires an appropriate execution framework. An execution
framework (often called an environment) is a collection of data and
routines supporting the execution of code. (For instance, memory

6 Chapter 1

Data Formats and
Communication

allocation tables and error-handling routines are usually components
of an execution framework.) The execution framework is normally
created by the supporting run-time library when the main program
begins execution. The execution framework is unique to each high-
level language; therefore, one must be created for each language by
some means before code in that language can execute successfully.

For a program written in a high-level language to execute
successfully, the execution framework must not only exist; it must also
be accessible to the program. This means that, in general, machine
registers must be set up to address components of the framework. For
example, C code will not execute successfully if register 12 does not
address the C Run-time Anchor Block (CRAB). Because each language
has its own conventions for framework access, it is usually impossible
for more than one framework to be accessible at the same time.
Therefore, a call from one language to another must “switch
frameworks,” that is, make the new language’s framework accessible
(or active) before performing the call and restore the calling
framework after the call is complete.

The SAS/C ILC support provides routines to create and delete
execution frameworks for C and for the various supported languages.
For example, if a main FORTRAN routine is going to call C, it must
first call the C library routine CFMWK to create the C framework.
Similarly, after all calls to C are complete, it must call the DCFMWK
routine to delete the C framework. (See Chapter 2, “Multilanguage
Framework Management,” for a detailed discussion of these routines
and Chapter 11, “ILC Framework Manipulation Routines,” for
rigorous descriptions of them.)

Once the necessary frameworks are created, the C library switches
frameworks automatically when an interlanguage call is performed.
For instance, when the FORTRAN program in the example above calls
a C function, the C framework is made active. Similarly, when the C
function returns, the FORTRAN framework is automatically restored.

Interlanguage communication is additionally complicated by the
various language conventions for data types and argument passing.
Although some types (such as binary integers) are common to all
languages, most languages have their own unique data types. In
addition, some languages have data types that differ from similarly
named types in other languages. For instance, COBOL’s
COMPUTATIONAL-3 (packed decimal) type and PL/I's AREA type are
examples of data types for which there are no C equivalents. The PL/I
default integer type FIXED BIN(15) and the C default integer type
int are an example of similar but differing types. (FIXED BIN(15)
corresponds to the C short, not the C int.) A more complex
example is the data type string. Both FORTRAN and Pascal have a
string data type. For FORTRAN, the string length is constant, while
for Pascal the length can change during execution. Neither language
recognizes the C convention of terminating strings with a 0 (null)
character.

Distinct from the problem of data types is the problem of different
argument-passing mechanisms. C passes arguments by value, which
means that the value of each argument is stored in the parameter
block passed to the called routine. Most other languages pass by
reference, which means that the parameter block contains argument
addresses rather than argument values. Pascal/VS is unique in that

Introduction to Interlanguage Communication 7

arguments may be passed either by value or by reference, on an
argument-by-argument basis.

When you use the SAS/C ILC support and C is called from another
language that uses call by reference, the arguments to the C function
must be defined as pointers to data of the appropriate type. More
flexibility is available when another language is called from C.
Whenever possible, the compiler converts arguments to an
appropriate data type and uses an appropriate argument-passing
convention. For instance, a C string constant being passed to a routine
defined as a FORTRAN FUNCTION will be converted to a FORTRAN
format string and will be passed by reference. For arguments where
the corresponding data type is not clear, the programmer can use data
type conversion macros to define exactly how the argument should be
passed. For example, the _ARRAY macro can be used to force an
array argument to be passed as an array rather than as a pointer.
Note that this flexibility and convenience is available only on calls by
C, not calls to C, because the code to call C is generated by another
language’s compiler, not by the SAS/C compiler.

Calling C from Another Language

When you call one or more C functions from another language, you
must do the following:

1. Call the CFMWK routine to create the C execution framework.
This must be done before any C routines are called. CFMWK
stores a token value that is later passed to DCFMWK to delete the
framework.

2. Call any C functions as if they were written in the calling
language. All arguments to the C functions must be declared in C
as pointers to the appropriate type (assuming call by reference is
used). Similarly, if the function is not a void function, the data
type returned by C must match the data type expected by the
other language. The C functions must be compiled with the
INDep compiler option.

3. After all C functions have been called, call DCFMWK to destroy

the C framework, passing it the token stored by the original call
to CFMWK.

The following example shows a FORTRAN MAIN program that calls C
to write out a “Hello, world!” type message:

(g]

FORTRAN MAIN routine

PROGRAM MIX

INTEGER TOKEN, ERR

CALL CFMWK('FORTRAN.',6 '.',6 0, TOKEN)
IF (TOKEN.EQ.0) STOP 16

CALL WRITER('Hello, FORTRAN world!')
CALL DCFMWK(TOKEN, ERR)

IF (ERR.NE.O) STOP 8

STOP

END

8 Chapter 1

/* C subroutine */
#include <stdio.h>

void writer(char *message)
{

char *last;

/% méssage ends with exclamation point...find end of message */

for (last = message; *last != '!'; ++last);
printf("%.*s\n", last-message+!1, message);
return;

Calling Another Language from C

When you call one or more routines in another language from C, you
must do the following:

1. Call the mkfmwk function to create the execution framework for
the other language. This must be done before any routines in the
other language are called. mk fmwk returns a token, which is
passed later to d1fmwk to delete the framework.

2. Call the routines in the other language. You must ensure that the
data types of the C arguments correspond to the appropriate data
types in the other language, or you must use data type
conversion macros to force compatibility. Also, if the other
language returns a value, the data type returned and the type
expected by the C language must be compatible. The non-C
routines must be declared using a keyword such as __cobol or
—pli to inform the compiler that another language is being
called.

3. After all C functions have been called, call d1fmwk to destroy
the other language’s framework, passing it the token returned by
the original call to mk fmwk.

The following example shows a C main program that calls PL/I to
write out a “Hello, world!” type message:

/¥ C main function */
#include <ilc.h>

main()
{
void *token;
extern _pli void writer();
if (!(token = mkfmwk("PLI",6 ""))) exit(16);
writer("Hello, PL/I world!");
if (dlfmwk(token)) exit(8);
exit(0);

Introduction to Interlanguage Communication 9

/* PL/I subroutine */

WRITER: PROC(MESSAGE);
DECLARE MESSAGE CHAR(*);
PUT SKIP EDIT(MESSAGE)(A);
RETURN;

END WRITER;

Linking Multilanguage Programs

Linking multilanguage programs is frequently an error-prone and
tedious task because of the differing conventions of various languages.
Problems include selection of a correct entry point and correct
resolution of subroutines from libraries for several languages.

The SAS/C ILC implementation includes a new linkage utility,
ILCLINK, which facilitates linkage of multilanguage programs.
ILCLINK is driven by an input file of control statements provided by
the user that describe the languages to be used and the required
linkage steps. The following example shows a simple control file for
linking the FORTRAN-C sample program above under OS:

* First language is FORTRAN.

FIRST MIX(FORTRAN)

LANGUAGE FORTRAN,C

* Process with OS linkage editor

PROCESS LKED LIST,XREF

* Use C and FORTRAN subroutine libraries for autocall
AUTOCALL LC370, FORTLIB

INCLUDE MIX,WRITER

NAME MIX(R)

10

11

Multilanguage Framework
Management

11 Introduction
11 Terms to Know
12 Framework Components
12 Framework Creation
12 Creating a Non-C Framework
13 Creating the C Framework
13 Framework Coexistence
13 Implementation Details
15 Efficiency Considerations
15 Framework Termination
15 Planned Termination
16 Unexpected Termination
16 Error Handling

Iintroduction

One of the difficulties in writing a program that combines several
high-level languages is management of the various execution
frameworks. The SAS/C ILC library routines assume most of this
burden, with some guidance from the user program. However,
understanding the library’s techniques for managing frameworks
facilitates the development and debugging of a multilanguage
application.

This chapter discusses general execution framework considerations
for writing multilanguage applications:

o framework components

o framework creation

o framework coexistence

o framework termination, both planned and unexpected
0 error handling.

Note that there are many additional considerations for programs
composed of more than two languages. These are discussed in Chapter
10, “Advanced Topics.”

Terms to Know

This section outlines some terms you should know before you read the
rest of the chapter.

main routine
the first high-level language routine to be executed in a
- program. In most languages, the main routine is identified at
compile time. For instance, in C, a main routine must be
named ma in, while in FORTRAN it must begin with a
PROGRAM statement.

save area chain
a linked list of storage areas in which called routines can
save their status, such as register contents. When a new

12 Chapter 2

Creating a Non-C
Framework

routine is called, a new area is added to the chain, which is
removed when the routine returns.

Framework Components

An execution framework is a collection of data and routines that
supports the execution of code. This normally includes at least the
following components:

O language library routines. In most cases, there are both resident
routines, linked with the application, and transient routines,
dynamically loaded at run-time or located in a shared region of
memory.

O control blocks, such as memory allocation tables, file descriptors,
and save area chains. The save area chains are of particular
importance because they define the calling sequence (which
routines are active and how they were called) for each language.
Some languages (such as PL/I, Pascal, and C) have registers
dedicated to addressing framework control blocks.

0 error handling information. In general, each language uses system-
specific macros (such as ESPIE and ABNEXIT) to gain control in
error situations. The system exit routines and the data necessary to
control them are important and complicated constituents of a
framework.

0 language-dependent information, providing support for specialized
language features. FORTRAN vector save areas, PL/I
CONTROLLED variable stacks, and C pseudoregister vectors and
coprocessing control blocks are examples of this sort of
information.

Framework Creation

The execution framework for a particular language is normally
created when a main routine in that language is executed. Depending
on the language, the framework may be created by a front-end routine
(like PLISTART) or by a library routine (like the FORTRAN VFEIM#),
and additional mechanisms may be provided to cater to calls from
assembler.

In a multilanguage program, one framework has to be created first,
namely, the framework for the first high-level language used. Creating
the other frameworks by calling additional main routines is
cumbersome at best and not conducive to using subroutine libraries in
another language. When you use the SAS/C ILC support, there should
be only one main routine, that for the first language. All frameworks
except the first are created only as the result of calls to SAS/C library
functions that request their creation. Note that the main routine is not
required to be in C. It is as easy to create the C framework from
COBOL as it is to create the COBOL framework from C. (See
Chapter 11, “ILC Framework Manipulation Routines,” for reference
information on the routines that create and destroy frameworks.)

To create the framework for a non-C language from C, you must call
the C library function mk fmwk. It is important to note the technique
by which mkfmwk creates a new framework. mk fmwk has no
knowledge of the implementation details of other languages. It

Creating the C
Framework

Implementation
Details

Multilanguage Framework Management 13

generates a framework by calling a SAS/C-supplied main routine in
the target language. For instance, when creating the PL/I framework,
mk fmwk calls a PL/I OPTIONS(MAIN) procedure named L$IPL1M.
This technique avoids dependencies on language versions or
maintenance levels in the SAS/C library. In addition, source code is
supplied for these main routines. If your site has an incompatible
compiler (either very old or very new), in many cases you will be able
to execute normally by simply recompiling this main routine with
your version of the compiler.

Most languages permit a user to specify run-time options when they
call the main program. Because mk fmwk calls a main routine, it can
accept run-time options for the new language from its caller and pass
them on to the new framework.

To create the C framework from another language, call the C library
routine CFMWK. As with mk fmwk, CFMWK works by calling a C main
function contained in the library, this one named L§CICMN. The
linkage conventions for CFMWK are defined so it can be called easily
from any language, without any language dependencies. (In fact, its
caller has to supply the language name as an argument so that C will
know which language created its framework.)

It is important to note that this technique forces a particular
structure on a multilanguage program. One language must be chosen
as the “main language,” and the only user-supplied main routine must
be coded in that language. All other languages will have their
frameworks created by calls to the SAS/C library framework creation
routines, and no user-coded main routines in these languages may be
included.

Framework Coexistence

During the execution of a SAS/C multilanguage program, execution
under each framework takes place more or less independently. While
C is running, for instance, the FORTRAN framework is quiescent.
When C calls a FORTRAN routine, the library deactivates the C
framework, activates the FORTRAN framework, and calls the
requested routine.

In order to switch frameworks properly, the SAS/C library must get
control every time one language calls or returns to another. This is
enforced by two different mechanisms. When C calls a routine in
another language, the called routine must be declared using a
keyword such as __cobol. This allows the compiler to generate code
that calls a library routine (L3CILCL) to perform the framework
switch.

When another language calls a C function, the C function must have
been compiled with the INDep compiler option. (See the SAS/C
Compiler and Library User’s Guide for more information on the INDep
option.) When the function is entered, it immediately calls a library
routine named LS$UPREP, which switches to the C framework before
returning to the called function.

If you are interfacing with assembler or debugging from system
dumps, the following information may be useful. Because each
framework is maintained separately, each language has its own save
area chain (and run-time stack, if applicable). This is necessary

14 Chapter 2

Figure 2.1
Multilanguage Save Area
Chain Example

because each language has its own conventions for save area layout
and interpretation. A C save area on a PL/I save area chain would be
likely to cause PL/I to behave incorrectly, possibly with fatal or very
confusing results. When SAS/C interlanguage communication is in
use, each language’s save area chain appears to contain a mixture of
its own save areas and assembler save areas. The assembler save
areas are used by the library routines that switch from one framework
to the other. The assembler routines in one framework are linked to
the non-assembler routines in the other frameworks. For instance, if
your calling sequence is FORTRAN->C->FORTRAN, the save area
chains for FORTRAN and for C will be as shown in Figure 2.1.
(Linked save areas are those at the same horizontal level in the

figure.)

FORTRAN C

L$CICMN
(C library main)

l

F(.)RT . i Assembler
main routine !
Assembler i £ C.

: unction
FORT . E Assembler
subroutine ;

Efficiency
Considerations

Planned
Termination

Multilanguage Framework Management 15

The steps actually performed by the library when it switches
frameworks are conceptually quite simple:

1. Point register 13 to the appropriate save area.

2. Modify error handling for the new framework (see Error
Handling later in this chapter).

3. Load any registers reserved by the new framework. (For
example, for C, put the CRAB address in register 12.)

4. Call (or return to) the requested routine.

Though every effort has been made to streamline the process of
switching frameworks, there is necessarily a significant amount of
overhead. Structuring your application to avoid interlanguage calls in
loops can result in big savings. For instance, you might be able to
move a loop to the called language so that you have only one
interlanguage call rather than many.

Correctly establishing error handling is one particularly expensive
part of a framework switch. There is a tradeoff between maximum
reliability and maximum performance which can be controlled by use
of the C =multitask run-time option. See Error Handling later in
this chapter for more information on this option and its implications.

Framework Termination

The execution framework for a particular language is normally
terminated when the main routine in that language completes
execution, or when an explicit termination statement (for example,
STOP RUN or HALT) is executed. In general, framework termination
includes closing open files, releasing memory, and canceling all error
handling.

In a multilanguage program, frameworks for languages other than
the first language can be terminated in an orderly fashion by calls to
SAS/C library functions. In addition, frameworks can be terminated as
a result of unusual events, such as execution of termination
statements or run-time errors. Such abrupt framework terminations
cause all frameworks to be terminated.

Frameworks are normally terminated by a call to a SAS/C library
function for that purpose. Of course, it is impossible to terminate a
framework if it is busy. For instance, you cannot terminate the PL/I
framework from a C function called from PL/I because the calling
PL/I routine is still using the framework. :

To terminate another language’s framework from C, call the SAS/C
library function d1fmwk. The argument to d1fmwk is the language
token returned by mk frawk to identify the framework when it was
created.

When d1fmwk is called, it transfers control to the non-C framework
identified by the token. The main routine for that language then
returns to its caller. This causes normal framework termination to
occur and ensures that all normal termination actions take place.
Because termination is handled by the other language’s library, the C
library does not need to get involved or have any special knowledge of
the other language’s implementation.

Similarly, to terminate the C framework from another language, call
the DCFMWK routine, passing the token stored by CFMWK when the

16 Chapter 2

Unexpected
Termination

framework was created. DCFMWK switches to the C framework and
forces LECICMN to return to its caller, thereby causing normal C
termination to take place.

Framework termination can also occur unexpectedly, due to errors or
unusual flows of control. For instance, FORTRAN enforces run-time
limits on certain kinds of errors. If the run-time error limit is
exceeded, the FORTRAN library simply writes out a final message and
terminates the FORTRAN framework. Events such as this make
continued execution of other languages very difficult.

The SAS/C interlanguage communication implementation assumes
that unexpected termination of a framework is either

O an error
O a deliberate attempt to completely terminate execution (as by
execution of a COBOL STOP RUN statement).

The unexpected termination causes all other frameworks to be
terminated and forces a return to the caller of the main program. The
return code will be the one associated with the first terminated
framework. For instance, if FORTRAN caused the termination, the
final return code will be the value requested by FORTRAN.

This feature requires that the C library be able to force termination
of any framework as necessary. For instance, if the C framework
terminates unexpectedly, it must be possible for C to then force the
termination of PL/I, whether or not C was the first framework
created. As with framework creation, this is achieved by calling a
library routine written in the language to be terminated. For instance,
to force Pascal to terminate, the library calls the Pascal routine
L$IPASQ. L$IPASQ calls the Pascal HALT function to terminate the
Pascal framework in the normal way. These quit routines are, like the
main routines, supplied in source in the interest of supporting
alternate versions of the standard languages.

Whenever the entire program is shut down because a single
framework has terminated, the SAS/C library writes a warning
message (LSCX281) identifying the framework that terminated. This
message is a useful debugging aid because, if termination occurred
because of unintended execution of a call to exit or a STOP RUN,
there may be no other external indication of the language that caused
termination.

Error Handling

Error handling is one of the most unpleasant parts of interlanguage
communication. In a multilanguage program, several languages may
have statements to handle similar errors, and it is important to be
sure that an error will be handled by the appropriate language. For
instance, division by zero in PL/I should be routed to a PL/I
ZERODIVIDE ON-unit, not to a C SIGFPE signal handler. Similarly, if
you are using debuggers for several languages, the proper debugger
needs to get control when an error occurs.

Due to the nature of the system interfaces used to capture errors, it
is difficult to guarantee correct routing without substantial overhead.
SAS/C ILC supports various options for error handling, depending on
the needs of the application.

Multilanguage Framework Management 17

When full error-handling support is needed, SAS/C ILC attempts to
intercept program checks and ABENDs before any other framework. If
the error occurred during the execution of non-C code, the error is
passed to the other language for processing. For complete reliability in
this processing, it is necessary under OS to run each language as a
separate task. Under CMS you must reissue the SPIE macro every
time a framework switch occurs. To request this form of error
supervision, use the C run-time option =multitask. This is
recommended during program development and testing. This option is
specified as a normal run-time option if C is the first language, or via
an argument to CFMWK if the main program is in some other language.

In many cases, you will not need the pervasive error-handling
provided by the =multitask option. A faster error-handling
implementation is available, tailored to the normal use of the SPIE,
STAE, and ABNEXIT macros by FORTRAN, COBOL, and PL/I. This
technique avoids much of the overhead but is still adequate for
allowing each language to handle in most cases its own errors. This
technique is used unless you specify the =multitask option.

For some applications, it may be that error handling is only needed
in one language. In this case, you can further reduce overhead by
suppressing error handling by one or more languages. For instance,
you can use the C =nohtsig and =nohcsig options to suppress C
error handling. Of course, when you do this, any errors that do occur
in C will be handled by the other language, possibly with unwanted
results. You might alternately want to suppress error handling in the
non-C language by, for example, using the PL/I NOSTAE and NOSPIE
options. When you use this type of error-check suppression and a
program check occurs in another language, the program will
terminate abnormally. This is because C is in control of the ILC
process and recognizes that the program check should not be handled
by C.

Be careful when using out-of-block GOTO statements in PL/I or
calls to longjmp in C for error handling. If one of these techniques
causes a block in another language to be terminated, the program will
eventually terminate abnormally. The C library attempts to detect this
situation and put out a helpful diagnostic, but in some cases the result
may simply be an ABEND that happens considerably later than the
fatal GOTO.

18

19

Communication with Other
Languages

19 Introduction
19 Terms to Know
20 Data Types and Data Formats
21 Common Data Types
24 Esoteric types
25 Data Sharing
25 Argument Passing
28 Return Value Handling
28 External Data Sharing
29 File Sharing
29 C Programming Considerations
29 Declaring Routines in Other Languages
30 The @ (Call-by-Reference) Operator
31 ILC Argument Promotions
31 Other Language Function Pointers
32 Function Pointer Arguments
33 __alignmem and __noalignmem
33 C Compiler Options for ILC Programs
35 Linking Considerations

Iintroduction

When a program is composed of routines in several languages, the
various languages must be able to communicate and process the same
data.

Sharing data effectively between languages requires an
understanding of each language’s data types and formats. The first
section of this chapter presents an overview of

O data types and formats
O how data types and formats differ from one language to another
O how these differences affect data sharing.

There are three techniques by which data in one language can be
made available to another: via subroutine arguments or function
return values, via external variables, or via shared files. All three
techniques can be used in the same pregram. The second section of
this chapter discusses each of these techniques.

The last two sections of this chapter discuss the ILC compiler
options and multilanguage application linkage considerations,
respectively. This chapter gives you a strong base on which to build
when you move on to creating a specific multilanguage application.

Terms to Know

This section outlines some terms you should know before reading the
rest of the chapter. Cross-references are in italics.

20 Chapter 3

argument promotion
the conversion of a routine argument from one type to
another, performed by the C compiler during processing of a
call; for example, character to int, float to double, or
array to pointer.

character literal
a constant that represents a single character, such as the C
constant 'x'. Most other languages do not distinguish
between character literals and string literals.

external symbol
the name of an area of storage defined to the linker or loader
so that it can be accessed by name from several different
object modules.

external variable
a variable that is declared in such a way that it can be
accessed by more than one routine or compilation.

formatted I/0
a form of 1/0 in which data are transmitted in printable
characters rather than in internal format. Sometimes called
text I/0 or stream I/0.

function prototype
in C, a declaration of a function that indicates the data types
of its arguments, as well as the data type returned.

IBM 370 standard linkage
the linkage technique used by assembler language routines,
most high-level languages, and many software packages.
Registers 1, 13, 14, and 15 are used to address a parameter
list, a register save area, the calling routine’s return address,
and the called routine’s first instruction, respectively.

PL/I descriptor
a control block defining the format of a complicated
argument, such as an array or a structure. PL/I normally
passes arguments with descriptors indirectly by passing the
descriptor address.

string literal
a constant that represents a sequence of characters, such as
"Hello" in C or 'Hello' in FORTRAN or Pascal. See also
character literal.

unformatted I/0
a form of I/0 in which data are transmitted in internal
format. Sometimes called binary I/O or record I/0.

Data Types and Data Formats

Each high-level language defines its own data types. (A data type
designates a set of values, together with a set of operations defined for
such values.) Some data types are common to most languages, while
others are unique. For instance, virtually all languages support a type
like the C int, while the C union type and the Pascal SET type are
unique to a single language.

Each data type of a language has an associated data format (physical
representation), which defines how data are stored and interpreted in

Common Data
Types

Communication with Other Languages 21

memory. The data format is an important aspect of a data type. Note
that types with different formats have to be considered different types.
For instance, the C type short int and the PL/I type FIXED
DECIMAL(3) are both types whose values are small integers that
occupy 2 bytes of memory. But, the value 0x012c has the value 300
when interpreted as a short int and the value 12 when interpreted
as a FIXED DECIMAL(3).

Because languages do not recognize the data types of other
languages, you need to use variables with the same data format to
share data between languages. For instance, as shown by the previous
example, if a C short int is written to a binary file and read back
into a PL/I FIXED DECIMAL(3), the data are interpreted differently.
However, if the input variable is of type FIXED BINARY(15), no
change in value occurs, because the format of a FIXED BINARY(15) is
the same as the format for a short int.

Later chapters in this book (Chapter 4, “Communication with
FORTRAN,” Chapter 5, “Communication with COBOL,” and so on)
include, for each language supported by SAS/C ILC, a table showing
equivalent data types.

For more information on common 370 data formats, see the IBM
manual System/370 Principles of Operation (GA22-7000).

Numeric types

The 370 architecture supports three numeric data formats: binary,
packed decimal, and floating-point. Furthermore, these formats
support several different sizes. For instance, floating-point data can be
stored as 4, 8, or 16 bytes, depending on the required precision. The
default size for a particular format varies from language to language.
For example, the usual size for floating-point numbers is 8 in C and
Pascal but 4 in FORTRAN and PL/I. When sharing numeric data
between languages, it is necessary that all languages use both the
same format and the same size.

The C language does not have a data type that uses packed decimal
format. However, SAS/C ILC provides the pdval and pdset macros,
which convert between packed decimal and floating-point data
formats. These macros are described in Chapter 12, “Using Packed
Decimal Data in C.”

COBOL and PL/I support a PICTURE data type, which is frequently
used as numeric. Such data are stored in character form and therefore
should be processed in C as character rather than as numeric.

Boolean and bit types

Many languages have a boolean type that is used to store truth values,
such as the results of comparisons. The FORTRAN LOGICAL, PL/I
BIT(1), and Pascal BOOLEAN are examples of such types. The C
language does not have an explicitly boolean type; truth values are
regarded simply as integers. Depending on the size of another
language’s boolean objects, truth values can generally be treated in C
as either char or int.

Some languages also have one or more bit data types, with primitive
operations like “logical and,” “logical or,” and “logical not.” PL/I
BIT(n) ALIGNED is an example. The Pascal SET type is another type
implemented as a bit string, with the union and intersection operators
implemented via logical or and logical and. If the size of a bit string
matches one of the C unsigned types, it can be easily processed in C

22 Chapter 3

using standard C operators. For other sizes, it is best to consider such
variables to be arrays of char and process them one character at a
time.

Bit types that are not necessarily aligned to a byte boundary, such
as PL/I’s BIT(n) UNALIGNED, are very difficult to process in C.
Values of this type should be converted to another type for use in C.

Character and string types

One of the ways in which C differs from most other programming
languages is in its treatment of characters and character strings. In
most languages, a single character is regarded simply as a character
string of length 1. In C, a single character is regarded as a very small
integer, and the character literal 'a' and the string literal "a"
represent distinct data types.

Although C does not have a character string type, it does have a
character string data format. Character strings in C are represented as
a sequence of characters, terminated by a null (zero) character.
Because no other common language uses this format, sharing string
data between C and other languages must be performed carefully.

The other commonly used 370 languages have two different string
formats: a fixed-length format and a varying-length format. The fixed-
length format is just a sequence of characters of a known length
without any special terminator. This format is supported by FORTRAN,
COBOL, PL/I, and Pascal. A C type with the same format is

char [n]}

Another type with the same format, which may be more convenient in
some cases, is

struct {char text [n];}

The varying-length string format is used by PL/I and Pascal. A
string in this format consists of a 2-byte integer that contains the
current length of the string, followed by a fixed-length text area of
some size. The current length of the string specifies how many
characters of text are significant. (Any remaining characters are
ignored.) A varying-length string can be modified to be any length up
to the size of the text area. Although C has no operators for
processing varying-length strings, it does have this suitable data type

struct (short len;
char text [n];}

SAS/C ILC provides macros for defining and converting varying-
length strings for the convenience of programs that share string data
with PL/I or Pascal. See Chapter 13, “C Varying-Length String
Macros,” for more information on these facilities. There is also a
vString compiler option that causes the compiler to put length
prefixes at the front of all C strings, permitting string literals to be
passed conveniently as arguments to PL/I or Pascal. (See C Compiler
Options for ILC Programs later in this chapter.)

Communication with Other Languages 23

Array types

All languages have one or more array types that are used to store a
number of elements of a single type. Array types are selected by an
index or subscript. Arrays can have more than one dimension. (This is
treated in some languages, such as C, as defining an array of arrays
rather than a multidimensional array.) As a rule, an array is stored in
memory as a contiguous set of elements.

In order to share an array between C and another language, it is
generally necessary only that the types in the two languages specify
the same number of elements and that the element types have the
same format.

Despite arrays’ basic simplicity, there are some language differences
to be aware of when sharing arrays. Note that the first element of a C
array is addressed as element 0, while the first element of an array in
most other languages is addressed as element 1. Some languages allow
the first element index to be defined uniquely for each array.

An additional problem that is specific to FORTRAN is that
FORTRAN stores multidimensional arrays in “column major order,”
while other languages, such as C, use “row major order.” This
difference, plus the difference in the first element number, means
that if the array A is shared between C and FORTRAN, then the C
A [m] [n] would be accessed as A(n+1,m+1) in FORTRAN.

Finally, note that C is unique in that it treats arrays and pointers
synonymously. Even though a C pointer to an int object can usually
be treated as an array of int, a Pascal pointer to INTEGER cannot be
treated as an array of INTEGER. When you share data with other
languages, you must be careful to process shared arrays only as arrays
and shared pointers only as pointers.

Structure types

Most languages support a structure, or “record,” type that consists of
one or more named elements. Each element can be of a different type,
frequently some other structure type. The data in a structure are
generally stored simply as a list of elements placed consecutively in
memory. Note that, even though FORTRAN does not have a structure
data type, named COMMON blocks can be treated as structures for
many purposes.

In general, a structure in C and a structure in another language
have the same format if corresponding elements have the same
format. However, different languages use different rules for alignment
of structure elements. For instance, consider the PL/I structure
defined by

DECLARE 1 8,
2 CH CHAR(1),
2 I FIXED BIN(31);

and the C structure defined by

struct {
char ch;
int i;
}s;

24 Chapter 3

Esoteric types

These structures do not have the same format because PL/I stores the
character CH in the byte immediately preceding the integer I, while C
puts the character ch in the first byte of the word before i, followed
by 3 padding bytes. The most general way to remedy this problem is
to add additional padding fields to the structure to force the formats
to be the same. For instance, a CHAR(3) padding element can be
placed after CH in the PL/I declaration to force the structure to be
formatted like the C structure.

Other techniques that may be helpful include the use of compiler
options (such as the SAS/C BYtealign option) or language keywords
(such as the COBOL SYNCHRONIZED clause or the SAS/C
—_noalignmem qualifier) that modify or simplify the way structure
elements are aligned.

Pointer types

Pointer types, in those languages that support them, are stored in a
standard format as 4-byte memory addresses. However, the way
pointers are used varies from language to language. C and Pascal
feature “strongly typed pointers,” in which pointers to one type of
data are distinguished from pointers to other types. In C, a pointer to
char and a pointer to int are different types with the same data
format. PL/I and COBOL, on the other hand, use generic pointers. In
PL/1, all POINTER variables are considered to have the same type,
and the same POINTER variable can be used to access variables of
various types.

Objects addressed via shared pointers are shared effectively
themselves. For this reason, the types addressed via a shared pointer
should have the same format. For example, a PL/I POINTER that is
used to address a BASED FIXED BINARY(31) variable should not be
treated in C as a pointer to double. If a generic pointer type is
required in C, the standard pointer type void #* should be used.

Most languages support data types that are unique to that language.
Sometimes, you are able to share such data with another language
using a structure in the other language that matches the format of the
original type. For instance, a FORTRAN COMPLEX number can be
easily processed in C using the type:

struct (float re,im;}

On the other hand, a PL/I LABEL variable cannot possibly be used
productively in C. A good rule of thumb is that you should not try to
share data of any type that has no meaning independent of the
language being used.

An important application of this rule is to file I/O. Each language
supports its own I/0, and many languages support FILE variables.
However, each language has its own rules for how I/0 is performed.
(For instance, FORTRAN files can be BACKSPACEd, while PL/I files
cannot.) It is impossible to share FILE variables between languages.
Even if, by chance, such variables have the same size, the meaning
and interpretation of the data are completely language dependent.

Argument Passing

Communication with Other Languages 23

Data Sharing

Each language has its own conventions for how arguments are passed
from one routine to another. When you use more than one language
in a program, you need to be aware of the conventions associated
with each language you use. When you use SAS/C ILC and call a C
function from another language, you must define the C function to
have arguments that match the conventions of the calling language.

When you use SAS/C ILC to call another language from C, the C
compiler and library transform the C argument list into one in the
format required by the called language. Even though, in this case, you
do not have to create the list in the correct format yourself, it is
useful to have an understanding of the other language’s conventions.

The languages supported by SAS/C ILC all use a form of IBM 370
standard linkage. On entry to a called function, register 1 always
addresses an argument list, register 15 always addresses the called
routine’s first instruction, and register 14 contains the caller’s return
address.

Note that Chapters 4 through 7 contain more language-specific
information on the conventions for particular languages.

C calling conventions (call by value)

C, unlike most other high-level languages, uses a call-by-value
convention for argument passing. This means that the argument list
addressed by register 1 for a C function call contains the argument
values stored consecutively. The following complications should be
noted:

0O An array is always converted to a pointer to the first array element
before the function call.

O short and char values are promoted to int before they are
stored in the argument list. Thus, they always occupy a fullword of
storage in the argument list.

0O double values are always stored on a doubleword boundary in the
argument list. This may leave a 4-byte gap after the previous
argument. float values are always promoted to double before
they are stored in the argument list.

O Structure and union arguments can be of any size, but they always
occupy an integral number of fullwords in the argument list. If the
size is less than 4 bytes, they are passed right-aligned in a fullword.
If the size is greater than 4 bytes, they are passed left-aligned in as
many fullwords as necessary. If the argument size is a multiple of 8

bytes, the argument is aligned on a doubleword boundary, possibly
leaving a gap.

Note that no explicit indicator is set to indicate the last argument.

Call by reference

FORTRAN, COBOL, and PL/I all use call-by-reference conventions for
passing arguments. (There are additional considerations for PL/I, as
discussed in PL/I descriptors later in this chapter.)

When call by reference is used, register 1 addresses a list of
argument addresses stored in consecutive fullwords. The last
argument in the list has the X’80000000’ bit set to indicate that it is
the final argument. Note that this bit has no effect when the argument

26 Chapter 3

is used to address data because the hardware ignores this bit in a
memory address.

A call-by-reference argument list is easy to process in C because it
has the same format as a call-by-value argument list in which all
arguments are pointers. To illustrate, assume that CSUB is a C
function in the following FORTRAN statements:

INTEGER I
REAL*8 X
CALL CSUB(I, 5, X)

If CSUB is defined in C by
void csub(int *i, int #n, double *x)

the argument list passed by FORTRAN is identical to that expected by C.

Pascal calling conventions

Pascal/VS allows the programmer to control how individual
arguments are passed. Pascal uses the terms “pass by value,” “pass by
VAR,” and “pass by CONST” to describe the available techniques.
Both “pass by VAR” and “pass by CONST” use call by reference, as
described above. That is, the address, not the value, of an argument
passed by VAR or CONST is stored in the list addressed by register 1.
(However, Pascal does not set the end-of-list bit in the last argument.)
“Pass by value,” which is the Pascal default, is more complicated:

o For record, array, and string arguments, the address, not the value,
of the argument is passed.

0 For other argument types, the value of the argument is passed.
However, the alignment rules are somewhat different than the C
alignment rules, and the C promotions do not occur. For instance,
if two CHAR variables and an INTEGER are passed by value, the
argument list will contain the two characters, a 2-byte gap, and the
INTEGER. The corresponding C argument list will contain three
fullword integers. See the Pascal/VS Programmer’s Guide for more
detailed information on the implementation of Pascal pass by value.

When you call C from Pascal, the use of pass by VAR or pass by
CONST is recommended. If all arguments are passed by VAR or
CONST, you can simply declare each C argument to be a pointer to an
appropriate type, as shown in Call by reference. Avoid using call by
value for values that are smaller than 4 bytes or for SHORTREAL
values because the differences from C argument passing conventions
make this type of data difficult or impossible to access in C.

PL/I descriptors

PL/I supports forms of argument passing that require control
information to be passed in addition to the argument address. For
instance, PL/I permits a string argument to be declared as CHAR(*),
which indicates that the string length is unknown and may vary from
one call to the next. PL/I supports such arguments by passing
descriptor addresses rather than data addresses. Descriptors contain
the actual data address as well as other information, such as string
lengths and array dimensions, that may not be known to the called

Communication with Other Languages 27

routine. Descriptor formats are documented in the IBM manuals PL/I
Optimizing Compiler Execution Logic and OS PL/I Version 2 Problem
Determination.

If information from the descriptors is useful, the descriptors can be
processed in C as structures, but they are of little use for most
applications. For this reason, when you pass arguments from PL/I to
C that require descriptors, you should declare the C function in PL/I
as OPTIONS(ASM). This causes PL/I to pass all arguments by
reference without any descriptors.

Passing arguments from C to other languages

To declare in C a function written in another language, use one of the
keywords __fortran, __cobol, __pli, or __pascal. Note that
these keywords all begin with a double underscore.

When you call a function declared in C to be in another language,
the arguments specified can be modified by the compiler and library
to conform to the argument-passing conventions of the other language.
Each argument can be specified in one of three ways: as a nonpointer
value, as a pointer value, or by using a data type conversion macro.
These three forms of argument are processed as follows:

O If possible, a nonpointer argument is transformed to match the
conventions of the called language. For instance, a short int
passed to Pascal is passed by value and stored in a halfword of the
argument list. Similarly, if the argument to a PL/I routine is a C
structure with the format of a PL/I CHAR VARYING string, a PL/I
string descriptor is created, and the descriptor address is passed to
PL/I1.

O A pointer argument is stored in the argument list directly and
passed unchanged to the called routine. The compiler and library
assume that the pointer is the address of a call-by-reference
argument. Note that by casting data of some other type to void *
you can store a fullword of arbitrary data in the argument list with
the assurance that the data will not be modified.

An exception to the rule of passing pointer arguments unchanged
is made when passing a string literal. In this case, the argument is
modified so that it will be treated as a string, rather than as an
array or pointer, in the target language. (For instance, when calling
FORTRAN, an additional control argument is created to pass the
string length.) When you communicate with PL/I or Pascal, string
literals are passed as fixed-length strings unless the C compiler
option VString is used to pass them as varying-length strings.

If you want to pass a string literal to another language using
direct call by reference, rather than as a string, you should cast it
to void *.

O In some cases, there may be another way to interpret a C object in
another language besides the above defaults. For instance, a C
char array might correspond in PL/I to a POINTER, an array of
CHAR(1), or a CHAR(n) string. In such cases, the default
interpretation may not be correct. In the char array example, by
default the array is converted to a char * value according to C
rules, and the pointer is stored in the argument list.

SAS/C ILC provides data type conversion macros for use in cases
like this so that the programmer can specify the type of the
argument in the other language. In the C char array example

28 Chapter 3

Return Value
Handling

External Data
Sharing

above, the programmer would use the _ARRAY macro to pass the
array as an array or the _STRING macro to pass it as a string.
Note that the data type conversion macro names all begin with a
single underscore, and the remainder of the name is always
uppercase.

The macros that can be used with each language are described in
detail in the chapter on communication with that language.

Most languages, with the exception of COBOL, support subroutines
that return a value to their caller. In contrast to argument passing, in
which there is much similarity between languages, return value
handling is specific to each language. Some languages (C and
FORTRAN) return values in registers, while others (PL/I and Pascal)
use an extra argument to address the return value. There is no
agreement on which registers to use or the location of the return
value in the argument list.

When you use SAS/C ILC, the C library passes return values from
one language to another so that each language’s conventions are
satisfied. However, it is sometimes necessary to restrict the types of
data that can be returned, due to limitations of one of the languages.
For instance, C does not support functions that return arrays. For this
reason, a routine declared in Pascal to return an array (which is
permitted by Pascal) cannot be implemented in C.

See the communication chapter for each language for complete
information on the permitted return value types and for any
applicable restrictions.

In addition to data sharing using arguments and return values, data
can be shared between languages via external variables. This may be
more convenient than sharing by argument passing if large amounts
of data are to be shared.

An external variable is a variable that is defined (in a language-
specific way) so that it can be referenced by name from more than
one compilation. Usually, an external variable is defined to the linker
or loader as an external symbol, which causes all uses of the variable
to be resolved to a single location in the load module. This
implementation permits several languages to use the same external
variable, provided that they all use the same name. Some languages,
such as PL/I and C, provide other implementations of external
variables as an alternative to the external symbol implementation.
Such variables are private externals and cannot be shared with other
languages.

Note that some languages, such as C and Pascal, distinguish
between declarations and definitions of external variables. A definition
of an external variable defines the storage associated with the external
symbol, while a declaration merely references that storage. Languages
that do not make this distinction always define the storage for an
external variable. An external variable shared between languages
must be defined in only one of the languages.

0 C extern variables can be shared with another language if the
NORENT compiler option is used. The RENT/RENTExt
implementation of non-const externs is as pseudoregisters,
which are not accessible from other languages. It is usually best to
define the variable in the other language when sharing a C extern
with another language.

Declaring Routines
in Other Languages

Communication with Other Languages 29

0 FORTRAN named COMMON blocks can be shared with C. (They
are accessed in C as extern structures.) A COMMON block is
always defined by FORTRAN, so a C definition must not also
appear. Dynamic COMMON blocks cannot be shared.

0 COBOL does not support external variables.

0 PL/I STATIC EXTERNAL variables can be shared with C. A
STATIC EXTERNAL variable is always defined by PL/I, so a C
definition must not also appear. PL/I CONTROLLED EXTERNAL
variables have a special format and cannot be shared with C.

O Pascal permits external variables to be defined using a DEF
declaration or to be referenced using a REF declaration. Both kinds
of variables can be shared with C. A C definition must be provided
if DEF is not used or omitted if DEF is used. Pascal also supports
global variables using a VAR declaration within a SEGMENT. These
variables cannot be shared with C.

When external variables are shared between languages, as with all
other forms of sharing, the data formats in the various languages must
agree.

Data written by one language can usually be read by another
language, provided that both languages support the same data formats.
However, you must understand the I/O conventions of the languages
involved. Most languages support two different kinds of I/O: formatted
1/0 (sometimes called stream I/O or text I/0) and unformatted I/0
(sometimes called record I/O or binary I/0). The use of formatted I/0
usually enhances file sharing because, as a rule, the data are stored as
printable characters, and no knowledge of internal data formats is
needed. Further, the internal formats of the input and output
variables need not be the same.

When unformatted I/0 is used, data are generally written or read
in internal format. For this reason, the data format of each output
variable must be the same as the format of each input variable. Note
that because unformatted I/O avoids the overhead of formatting, it is
usually more efficient than formatted I/0.

Note: You should never attempt to process the same file
simultaneously from more than one language. For instance, if a C
function is writing a file that must be read by a called COBOL
routine, you must close the file in C before opening it in COBOL. This
is required because different languages use different file processing
techniques and because the 370 operating systems provide very little
support for simultaneous file accesses.

Also note that FILE variables are implemented uniquely by each
language. It is not possible to use a PL/I FILE variable in a C
function, or a C FILE pointer in PL/I.

C Programming Considerations

This section summarizes a number of C language extensions and
compiler options that are useful in multilanguage programs.

A routine in another language called from SAS/C ILC must be
declared to be in another language, using one of the keywords
—fortran, __cobol,__pli,___pascal,or _ _foreign. (The
__foreign keyword specifies that the declared function is in a user-

30 Chapter 3

The @ (Call-by-
Reference)
Operator

supported language. See Chapters 14 through 16 for more
information.) Note that each of these keywords begins with a double
underscore. Other language routine names can be specified in either
upper- or lowercase because the compiler translates the names of
external functions to uppercase during compilation.

Note that other language routine names must obey the naming
conventions of both languages and must generate the same external
symbol in both languages. These are some results of this requirement:

0 The name of a routine in another language cannot begin with a
dollar sign ($). It can contain a dollar sign (in a position other than
the first) only if the C compiler option DOllars is used.

o0 The name of a routine in another language cannot contain the at
sign (@).

0 The name of a routine in another language must replace each
underscore (_) with a pound sign (#) if the routine name in C
includes an underscore.

o Different languages use different rules for truncation of routine
names that are too long. For instance, the C compiler truncates the
name VeryLongName to VERYLONG, while PL/I truncates the
same name to VERYAME.

Examples of declarations of routines in other languages are

extern __fortran void DGEMUL();

extern __fortran double dexp()'; /* a FORTRAN math library routine */
extern __cobol void withhold();

extern __pli char *bufaddr();

Note that you must not specify a prototype for a routine in another
language. A prototype causes unnecessary conversions to take place
and interferes with the operation of the data type conversion macros
such as _STRING and _ARRAY.

The a operator, which is described in more detail in the SAS/C
Compiler and Library User’s Guide, is frequently used when calling a
routine in another language. If x is an expression such that &£x is a
valid C expression, then ax and &x have the same meaning. (That is,
both denote the address of x.) If, however, x is a non-lvalue
expression, such as a+b, then ax is the address of a temporary copy
of x. For instance, in the case of a3 (a+b), where a and b have type
int, the compiler generates code to compute the value of a+b, store
the value in a temporary integer, and then load the address of the
temporary.

An a expression can be used only as a function call argument.
Because all nonpointer arguments to a routine in another language
(other than Pascal) are passed by reference automatically, the primary
use for the a operator in a multilanguage program is to pass a pointer
value by reference. For instance, to pass a PL/I procedure a POINTER

whose value is &z, you must code

plifunc(aéz);

If you code plifunc(éz) instead, €z will be stored directly in the
argument list, causing the PL/I POINTER argument to contain the
value rather than the address of z.

ILC Argument
Promotions

Other Language
Function Pointers

Communication with Other Languages 31

The a operator is also useful when calling Pascal to force pass by
reference rather than pass by value.

Note that the compiler option AT must be specified if you use the @
operator.

When you call a routine in another language from C, argument
promotions are performed differently than for a call to a normal C
function in order to preserve information important to the other
language. Although arrays are converted to pointers when passed to
another language, char and short expressions are not promoted to
int, and float arguments are not promoted to double. If
promotion is desired, you can use a cast to force the promotion.
Another violation of strict C language rules occurs when a string
literal is passed to another language. The argument value stored by
the compiler for such an argument is of the form required by the
called language, rather than simply a pointer to the first character of
the string. This means that two calls to a Pascal routine of the forms

pascfun("abc")
and
pascfun((void *)"abc")
will have different effects. (Which call is correct depends on the way

that pascfun is defined in Pascal: the former is correct for a STRING

argument, and the latter is correct for a pointer argument passed by
value.)

You should also be aware of the possibly surprising result of a C

~ language rule that is honored for a call to another language. The type

of a character literal, such as 'a', is int, not char. This is a
consequence of the fact that a character literal such as 'abcd' may
contain more than one character. For this reason, an interlanguage
call such as

cobfun('a')

passes an integer rather than a character argument. To pass a
character, you must code

cobfun((char) 'a')

You can declare function pointers as well as functions to be in
another language. For instance,

__fortran double (*eqn)();

defines eqn to be a pointer to a routine written in FORTRAN, which
returns a double. A function pointer in any language other than C or
assembler will hereafter be called an HLL function pointer. HLL
function pointers have a size of 4 bytes, and the data they address are
in a format known only to the language of the function. (For example,
a__pli function pointer addresses a PL/I ENTRY variable.)

32 Chapter 3

Function Pointer
Arguments

The format used by Pascal/VS for FUNCTION and PROCEDURE
arguments requires 28 bytes. Because the compiler treats all function
pointers as having a size of 4 bytes, additional work is necessary for a
C function that has a Pascal routine as an argument. See Chapter 7,
“Communication with Pascal,” for details.

You cannot use a language keyword such as __fortran in any
declaration where its application is ambiguous. For instance, the
following declaration is wrong:

—fortran int (*(*weird)())(); /* erroneous declaration */

It is unclear which is in FORTRAN: the function addressed by weird,
or the function addressed by the value returned by weird. If it is
necessary to define functions of this sort, you can use a typedef to
disambiguate. For example,

typedef __fortran int (*fortfun)();
fortfun weird();

declares weird to be a (C) function that returns a pointer to a
FORTRAN routine that returns an integer. (Note that, even with the
help of typedefs, types of this sort are very confusing and difficult
to understand, and you should avoid them if possible.)

An HLL function pointer can be given a value in only one of two
ways: it can be passed as an argument from the other language or it
can be copied by assignment from another function pointer of the
same type.

Because the format of an HLL function pointer is unknown, the
following code is erroneous and cannot be compiled:

_fortran double myfunc();
—fortran double (*somefunc)();
somefunc = émyfunc; /* ERROR: conversion not supported */

The only uses that can be made of a foreign function pointer are to
assign it to another similar function pointer, to call it, or to pass it as
an argument to a function in C, assembler, or the language of the
function pointer. (Thus, you cannot pass a __pli function pointer to
a FORTRAN routine.)

When you call C from another language, you can pass the name of a
routine in that language (or a PL/I ENTRY variable), provided that the
corresponding C argument is declared as an HLL function pointer of
the appropriate type.

Similarly, when you call another language from C, you can pass a
function or function address provided that it is declared appropriately
in the other language (EXTERNAL in FORTRAN, ENTRY in PL/I, and
FUNCTION or PROCEDURE in Pascal). The passed function can be in
C, assembler, or the called language and must be declared correctly in
the calling routine. (For a function in the called language, use the
appropriate language keyword, such as __pli. For a function in
assembler, use the __asm keyword.) If the function is in C or
assembler, the value stored in the argument list is converted by the C

—alignmem and
—noalignmem

C Compiler Options
for ILC Programs

Communication with Other Languages 33

library to the format: of the called language. See the communication
chapters later in this book for details for a particular language.

The __alignmem and __noalignmem keywords can be used when
defining a structure tag to specify how fields should be aligned. These
keywords take precedence over the alignment requested by the
BYtealign or NOBYtealign options. These keywords can be useful
for sharing structures with another language that does not use C rules
for structure mapping. For instance, consider a COBOL record that is
defined in the linkage section as

01 SHARED-DATA.
05 NAME PICTURE X(17).
05 ZIP PICTURE 9(5) COMPUTATIONAL.
05 STATE PICTURE X(15).

An equivalent C structure type could be defined by

__noalignmem struct shared |
char name [17];
int zip;
char state [15];

5

If __noalignmem were not specified, 3 bytes of padding would be
inserted in the C structure between the name and zip fields, while
the COBOL structure would have no such padding. (Alternately, the
SYNCHRONIZED keyword could be used in the COBOL record
definition to force alignment of ZIP in COBOL.)

See SAS Technical Report C-106, Changes and Enhancements to the
SAS/C Compiler, Release 4.00, for more information on __alignmem
and __noalignmem.

This section briefly describes compiler options that can be useful for
functions that call or are called by another language. For more
information, see the SAS/C Compiler and Library User’s Guide and
SAS Technical Report C-106.

AT

The AT option is required if you use the @ operator to pass function
arguments by reference.

BYtealign

The BYtealign option can be useful for functions that communicate
with another language to cause structures to be mapped without
padding between fields. This feature is particularly valuable for
functions that communicate with COBOL because by default COBOL
never aligns record items.

The INDep option specifies that the compiled functions can be called
with the C framework inaccessible. This option is required for any C
function that can be called from another language. It is not required

34 Chapter 3

for a C function that calls another language and is not recommended
unless required.

The INDep option causes the code for each function to call a
library routine named L$UPREP on entry. Use of the ILC feature
precludes use of the INDep option for other purposes, such as those
described in Chapter 12, “Using the INDep Option for Interlanguage
Communication,” and Chapter 13, “Executing SAS/C Programs
without the Run Time Library,” in the SAS/C Compiler and Library
User’s Guide. For a multilanguage program, a correct version of
L$UPREDP is selected by the ILCLINK utility and will be different from
the LSUPREP for which source is distributed. You cannot replace the
L$UPREP selected by ILCLINK with a modified version of your own.

NORENT

When the NORENT option is used, extern C variables are defined
and referenced as external symbols. This permits them to be shared
with other languages that also use this technique. For example, a C
extern int references the same storage as a PL/I STATIC
EXTERNAL FIXED BIN(31) variable with the same name. As the
option name implies, use of the NORENT option means that the
resulting program will not be reentrant.

If you use the RENT or RENTExt option, extern data are normally
stored in pseudoregisters, which cannot be shared with other
languages. You may still be able to share extern data with another
language if it is declared const. See SAS Technical Report C-106 for
details.

VString

The vstring compiler option changes the way in which string
literals are passed to PL/I and Pascal. If the VString option is not
specified, a string literal is passed to PL/I or Pascal as a fixed-length
string (PL/I CHAR(*) or Pascal CONST PACKED ARRAY OF CHAR).
If the vString option is specified, a string literal is passed to PL/I or
Pascal as a varying-length string (PL/I CHAR(*) VARYING or Pascal
CONST STRING).

The vstring option increases storage requirements slightly for a C
function because it causes each character string literal to be preceded
by a 2-byte length prefix. This prefix has no effect on any C
statements or operations other than calls to PL/I or Pascal. In
particular, the address of the string is still considered to be the
address of its first character, not the address of the prefix.

If your application requires that string literals be passed to some
routines as fixed-length and some as varying-length, you should
specify the VString option and use the _STRING data type
conversion macro when a fixed-length argument is required, as in this
example:

/* Example presumes use of VString compiler option */
—pli void subv(), subf();

subv("This is a varying-length string.");

subf (_STRING("This is a fixed-length string.," 0));

Communication with Other Languages 35

Linking Considerations

Creating an executable module from components in several languages
can be very difficult for the following reasons:

o0 Documentation that is accurate in a single language context may be
misleading when several languages are combined. For instance, a
load module can have only one entry point, so all but one
language’s documented entry point must be ignored.

O Restrictions of one language may affect the others. For instance,
because Pascal/VS does not produce object code that can execute in
31-bit addressing mode, load modules containing both the SAS/C
language and Pascal/VS must be linked with AMODE=24, even
though the restriction does not apply to the SAS/C language by
itself.

O Linking in several steps may be necessary to reconcile conflicts
between languages. For example, when you combine C and PL/I, it
is generally necessary torun the CLINK utility using the PREM
option even if reentrancy is not required, to prevent the C
language’s use of pseudoregisters from interfering with PL/I.

O The SAS/C ILC implementation puts unique demands on the linking
process. For instance, a program in which C is called by another
language requires a version of the LSUPREP run-time function
determined by which language or languages will be calling C.

To ameliorate these problems, SAS/C ILC provides the ILCLINK
utility, which is a driver program for creation of multilanguage
modules. The goal of ILCLINK is to enable the user to describe the
program to be linked using relatively simple control statements.
ILCLINK invokes whatever other utilities are required, as directed by
its control statements. Information about the requirements of other
languages and of SAS/C ILC is built into ILCLINK so that the user
does not need to be aware of them.

ILCLINK control statements enable the user to specify the following:

O the languages in which the program is written

O the first language to get control and the name of the main routine

O the names of the link utilities to be run (for example, CLINK, the
OS linkage editor, the CMS LOAD and GENMOD commands) and
any necessary options

O the names of any required autocall (GLOBAL) libraries

O control statements for the link utilities, such as CLINK or linkage
editor INCLUDE statements

0 one or more TSO or CMS commands to be executed by ILCLINK
(this is optional). These commands can be used, for instance, to
allocate DD statements referenced by linkage editor control
statements.

36 Chapter 3

The following is a sample input file of ILCLINK control statements
to build a CMS module using both C and PL/I under CMS. Numbers
preceding a control statement are references to notes, not part of the
control statements.

PN BN

FIRST *(PLI2)

LANGUAGE PLI2,C

PROCESS CLINK (PREM
AUTOCALL LC370

INCLUDE PH2C

PROCESS LOAD PH2P (NODUP
AUTOCALL PLILIB

PROCESS GENMOD PH2

The control statements have the following meanings:

1.

The FIRST statement indicates that the main program is in PL/I.
No procedure name is specified, which causes ILCLINK to
determine that the correct entry point is PLISTART.

- The program uses code generated from the SAS/C language and

PL/I Version 2.

. The first program that should be run is CLINK. The CLINK

PREM option is Epecified to prevent C pseudoregister definitions
from interfering with PL/1.

. The SAS/C run-time library is defined as an autocall library for

CLINK.

. The CLINK INCLUDE statement causes CLINK to include the

object module PH2C TEXT in its output.

. The next program that should be run is the CMS LOAD

command. The object module PH2P TEXT should be processed
at this time. The CMS option NODUP is used to suppress
“duplicate CSECT” warning messages, which are usually
generated for multilanguage programs.

. The PL/I run-time library is defined as an autocall library for

LOAD.

. A MODULE file named PH2 is to be generated from the output

of the LOAD command.

A complete description of ILCLINK is in Chapter 8, “Linking
Multilanguage Programs with the ILCLINK Utility.”

37

Communication with
FORTRAN

37 Introduction
38 Versions Supported
38 Framework Considerations
38 FORTRAN Data Types
39 Passing Data to C from FORTRAN
39 CHARACTER Arguments
40 Array Arguments
40 Returning Data to FORTRAN from C
40 Returning COMPLEX
40 Returning CHARACTER
41 Examples: Calling C from FORTRAN
41 Passing Data to FORTRAN from C
42 char Arguments
43 String Arguments
43 Array Arguments
44 Function Pointers
44 Returning Data to C from FORTRAN
44 Returning COMPLEX
44 Returning CHARACTER*n
44 Data Type Conversion Macros
45 Examples: Calling FORTRAN from C
46 Error Handling Considerations
46 External Data Sharing Considerations
47 Linking Considerations
47 Hints
47 Multidimensional Arrays

Introduction

This chapter provides the technical details for using SAS/C ILC with
FORTRAN. The topics covered are

o the versions of FORTRAN supported by SAS/C ILC

O execution framework considerations

0 FORTRAN data types and their corresponding types in C

O passing data from FORTRAN to C and vice versa

O returning data to FORTRAN from C and vice versa

O error handling considerations

O data sharing considerations

O linking considerations

O hints on passing multidimensional arrays between
FORTRAN and C.

Many sections include examples of correct and incorrect calls to
each language. These examples, plus the accompanying discussion,
provide the necessary background to write FORTRAN-C applications.
Before reading this chapter, you should be familiar with the material
in Chapters 1 through 3.

38 Chapter 4

Table 4.1
FORTRAN-C
Corresponding Data Types

Versions Supported

SAS/C ILC directly supports communication with programs compiled
with VS FORTRAN Version 1 Release 4 or VS FORTRAN Version 2.
At the time the program is linked, you must specify to ILCLINK which
of the two levels of FORTRAN is in use.

Routines compiled with earlier IBM FORTRAN compilers, such as
the G1 or H compilers, should also work correctly if the FORTRAN
main and termination routines (LJIFORM and L$IFO1Q) are
recompiled with the corresponding compiler. (Source for these
routines can be found in SASC.SOURCE under OS or LSU MACLIB
under CMS.) If you recompile these routines and replace the
corresponding obiject files, you should specify the language as
FORTRAN (not FORTRANZ) to ILCLINK.

Framework Considerations

A restriction of IBM FORTRAN implementations makes it impossible
to create, delete, and re-create the FORTRAN framework successfully
in the same program. (See the VS FORTRAN Programming Guide.) The
easiest way to bypass this restriction is to call mk fmwk in the Cmain
function and terminate the FORTRAN framework only immediately
before returning from main. If there are calls to mkfmwk to create
the FORTRAN framework elsewhere in the C program, these calls will
have no harmful effects. (However, each extra call to mkfmwk must
be matched by a corresponding d1fmwk call before program
termination.)

The FORTRAN main program must not be called MAIN because
this name is reserved by the C library. For FORTRAN 66 programs,
you should use the FORTRAN compiler option NAME to assign some
other name. For FORTRAN 77 programs, you should use a
PROGRAM statement in the main routine to assign another name.

FORTRAN Data Types

Table 4.1 lists the common FORTRAN data types and their C
equivalents. Consult this table for general information about
corresponding data types and to determine how to declare variables
shared between the two languages.

FORTRAN Type C Type
INTEGER*4 int, long
INTEGER*2 short
REAL*4 float
REAL*8 double
LOGICAL*4 unsigned int, unsigned long
LOGICAL*1 char
COMPLEX*8 struct {float re,im;}
COMPLEX*16 struct (double re,im;}
CHARACTER*1 char
CHARACTER*n char [n],

struct {char text [n];}
array type [n]

Table 4.2
Argument Types for Calls
from FORTRAN to C

CHARACTER
Arguments

Communication with FORTRAN 39

Data types omitted from Table 4.1 have no close equivalent in the
other language.

See Chapter 3, “Communication with Other Languages,” for general
information on data formats and data sharing.

Passing Data to C from FORTRAN

When you write a C function that can be called from FORTRAN, you
must do the following:

1. Compile the C function with the INDep option, which is always
required for C functions called from another high-level language.

2. Declare each argument to be a pointer to data of the C type
corresponding to the type of the data being passed from
FORTRAN. (Arguments must be declared as pointers because
FORTRAN uses call by reference.)

Table 4.2 shows the type that should be declared for the
corresponding C parameter for each FORTRAN argument type. For
example, the C argument corresponding to a FORTRAN REAL*4 value
should be declared as f1oat *. A Yes in the Special Considerations
column indicates that additional information on passing values of this
type is available in the sections following the table.

Special
FORTRAN Type C Type Considerations
INTEGER*4 int *, long *
INTEGER*2 short *
REAL*4 float *
REAL*8 double *
LOGICAL*4 unsigned int *,
unsigned long *
LOGICAL*1 char *
COMPLEX*8 struct {
float re,im;}*
COMPLEX*16 struct |
double re,im;}*
CHARACTER*1 char *
CHARACTER*n char [n], Yes
char *,
struct {
char text [n];}*
EXTERNAL —fortran (*)()
array type [n], Yes
type *

The length of a string passed from FORTRAN is not available to C.
Therefore, you may want to pass the string length as an additional
argument. Another alternative is to end each string argument with an
unusual character (such as ~) and search for this terminator in the
called C function.

40 Chapter 4

Array Arguments

Returning
COMPLEX

Returning
CHARACTER

An array passed from FORTRAN can be declared in the called C
routine as either an array or a pointer. The C array element type or
pointed-to type should be a type with the same format as the
FORTRAN element type. For instance, an INTEGER array passed
from FORTRAN can be defined in C to have either the type int []
or int *,

FORTRAN and C address arrays differently. In FORTRAN, the first
element of an array is normally element 1, while in C the first
element is element 0. For multidimensional arrays, FORTRAN and C
use a different order of indexing. The following FORTRAN and C
declarations define arrays with the same memory layout:

DIMENSION Z(10,5)
float z [5][10]

As with string lengths, FORTRAN does not provide information on
the dimensions of array arguments. These must be passed as
additional arguments if needed by C.

There is no C language construct corresponding to the FORTRAN
“dummy array” concept. See Hints, later in this chapter, for an
example of C code that circumvents this deficiency.

Returning Data to FORTRAN from C

If you call a C function from FORTRAN as a FUNCTION and expect a
value to be returned, then the C function must be defined as
returning a value of a type with the same format as the return type
expected by FORTRAN. If you call a C function as a SUBROUTINE
and use a FORTRAN CALL statement, then the C function must be
defined as returning void.

There is no C equivalent to the FORTRAN RETURN n statement.

Note the following special considerations when returning data to
FORTRAN from C.

You cannot write a C function that returns a COMPLEX value. You
should instead pass a COMPLEX argument whose value can be
modified by the C function.

A C function that returns a CHARACTER*n value to FORTRAN
should be defined as returning

struct (char text [n];}

This is true even if n is 1, because a C function that returns char is
treated by the library as returning a LOGICAL*1 value.

Communication with FORTRAN 41

Examples: Calling C from FORTRAN

Assume the following C function headers:
void csub(int *ip, float *xp, char *s)

typedef struct {
char text [20];
} str20;

str20 cfun(short *shp, double *dp, float a [20])
The following calls from FORTRAN to C are correct:

CHARACTER#20 CFUN
INTEGER*4 I
INTEGER*2 ISH
REAL*4 X, A(20)
CHARACTER*32 S
CHARACTER*20 STR

CALL CSUB(I, X, S)
CALL CSUB(14, 3.72, 'Hello, world!')
STR = CFUN(ISH, .314159D1, A)

The following calls are incorrect and will probably cause errors
during execution for the reasons explained in the comments that
follow the calls:

CALL CSUB(12.0, X, S)

C ERROR: The first argument should be INTEGER*4 rather than a
c REAL*4 constant.

STR = CFUN(ISH, 3.14159, A)
ERROR: The second argument should be REAL*8 instead of -a REAL*
C constant.

CALL CFUN(ISH, 3.14159D0, A)
ERROR: CFUN returns a value, so it must be called as a
c FUNCTION not a SUBROUTINE.

(o]

(]

Passing Data to FORTRAN from C
To call a FORTRAN routine from C, you must do the following:

1. Declare the FORTRAN routine in C using the __fortran
keyword to inform the compiler that the routine is written in
FORTRAN.

2. Make sure that each argument is passed correctly to FORTRAN.
(Consult Table 4.3. A Yes in the Special Considerations column
indicates that additional information is available in the sections

42 Chapter 4

Argument Types for Calls Type
from C to FORTRAN

following the table.) There are three different ways an argument
can be passed:

o For argument types without a Special Considerations entry in
the table and for others as described below, the argument can
be passed directly and will be converted correctly by the
compiler.

O Any argument except a character string argument can be
passed using a pointer to an appropriate type of data. The
argument can be a pointer variable or an address expression
using the & or @ operator. In this case, the compiler makes no
attempt at conversion and simply stores the pointer in the
FORTRAN parameter list.

O Some arguments should be passed using data type conversion
macros to convert the argument to the required FORTRAN
data type. For instance, the _STRING macro can be used to
specify that a C character pointer corresponds to a
CHARACTER*n argument rather than a LOGICAL*1.

Table 4.3 shows situations in which a macro can be used with
a particular type.

Table 4.3 FORTRAN Special
C Type Considerations Macro
INTEGER*4 int, long
INTEGER*2 short
REAL*4 float
REAL*8 double
LOGICAL*4 unsigned int,
unsigned long
LOGICAL*1 char
COMPLEX*8 struct {
float re,im;}
COMPLEX*16 struct {
double re,im;}
CHARACTER*1 char Yes
CHARACTER*n char [n], Yes _STRING
char *,
struct |
char text [n];}
EXTERNAL (*)(), Yes
—fortran (*)()
array type [nl], Yes
type *
array of char [m][n], Yes _STRING

CHARACTER*n struct ({
char text [n];}[m]

char Arguments The C language definition specifies that a character constant, such as

'a’', has type int rather than type char. For this reason, an
argument that is a character constant is passed correctly to
FORTRAN, assuming the FORTRAN argument is INTEGER. To pass

String Arguments

Array Arguments

Communication with FORTRAN 43

the value as a LOGICAL*1, use a cast (that is, (char) 'a"'). To pass
the value as a CHARACTER*1, write it as a string literal rather than
as a character literal (that is, as "a").

Arguments that are declared in FORTRAN as CHARACTER*n should
be passed in one of the following ways:

O using a string literal, such as "abc"
O using a structure of type struct {char text [n];}
O using the _STRING macro, as described below.

The _STRING macro, defined in the header file <ilc.h>, is used
to inform the compiler that a char * or char [] argument is to be
passed to FORTRAN as a CHARACTER*n string rather than as a
pointer. The argument should be specified as

—STRING(str, len)

where str is the pointer and len is the string length. 1en may be
specified as O if the string length should be computed using the
strlen function. A 1len of 0 is appropriate only if the FORTRAN
argument is CHARACTER*(*). (A more complete description of
—STRING is in Data Type Conversion Macros later in this chapter.)

To illustrate the above, suppose that FPRINT is a FORTRAN
subroutine with a single CHARACTER*(*) argument. In this case, the
following C calls are all correct:

struct (char text [9];) str1 = ("First way"};
char *str2 = "Second way";
void __fortran FPRINT();

FPRINT(str1);
FPRINT(_STRING(str2, 6)); /* only "Second" is passed */

FPRINT (_STRING(str2, 0)); /* entire string is passed */
FPRINT("Third way");

You should not pass a C char * or char [] value directly for a
FORTRAN CHARACTER*n or CHARACTER*(*) argument because no
length information will be passed. This may cause the called
FORTRAN routine to generate a diagnostic or produce incorrect
results. For this reason, the following call to FPRINT is incorrect:

FPRINT(str2); /#* ERROR: no string length is passed */

See the comments in Passing Data from C to FORTRAN earlier in
this chapter for a discussion of the differences between FORTRAN
arrays and C arrays. Although they are subject to these differences, C
arrays can be passed directly to FORTRAN. The _ARRAY macro (as
described in Chapter 6, “Communication with PL/I”) can also be used
but is unnecessary.

For a FORTRAN argument defined as an array of CHARACTER*n,
the C argument should be a two-dimensional array of characters or a
one-dimensional array of string structures. For an argument defined
as an array of CHARACTER*(*), the C argument must be passed using
the _STRING macro, and a length of 0 cannot be specified.

44 Chapter 4

Function Pointers

Returning
COMPLEX

Returning
CHARACTER*n

Either a __fortran function pointer or a standard C function
pointer can be passed to a FORTRAN EXTERNAL argument.
However, a C function pointer must not address a function in another
load module.

Returning Data to C from FORTRAN

If you are calling a FORTRAN FUNCTION from C, it must be
declared in C as returning a value of a type with the same format as
the returned FORTRAN type. If you are calling a FORTRAN
SUBROUTINE from C, it must be declared in C as returning void.

You cannot use the FORTRAN RETURN n statement in a FORTRAN
routine called from C.

Note the following special considerations when returning data to C
from FORTRAN.

You cannot call FORTRAN routines returning COMPLEX from C.
Such routines should be modified to store the return value into a
COMPLEX argument.

A FORTRAN routine that returns a CHARACTER*n value to C should
be defined as returning a

struct (char text [n];}

This is true even if n is 1, because a FORTRAN routine returning
char is assumed by the library to return a LOGICAL*1 value.

Data Type Conversion Macros

This section describes the use of the _STRING data type conversion
macro with FORTRAN.

Communication with FORTRAN 45

—STRING Pass String Argument to FORTRAN

SYNOPSIS

#include <ilc.h>

—STRING(char *str, unsigned len);

DESCRIPTION
The _STRING macro is used to pass a char * or char []
value to a FORTRAN CHARACTER*n or CHARACTER*(*)
argument. The str argument should be a pointer to the first
byte of the string to be passed. (It can be a string literal.) The
len argument should be the string length to be passed to
FORTRAN. If 1en is specified as 0, the string length is
determined at execution time by invoking strilen.
_STRING can also be used to pass an array of strings to a
FORTRAN CHARACTER*(*) array argument. The C array of
strings must be a two-dimensional array of char or an array
of string structures

struct (char text [n];}

It cannot be an array of char =*. In the case of a string
array, the value of n cannot be specified as 0.

EXAMPLE
See Examples: Calling FORTRAN from C below.

Examples: Calling FORTRAN from C

Assume the following FORTRAN FUNCTION and SUBROUTINE
definitions:

SUBROUTINE FSUB(I, X, S)
INTEGER I

REAL X

CHARACTER *(*) S

REAL*8 FFUN(IS, DP, A)
INTEGER*2 IS

REAL*8 DP

REAL A(20)

46 Chapter 4

The following calls from C to FORTRAN are correct:

—fortran void fsub();
—fortran double ffun();

int i;

short sh;

float x;

char *s;

float a [20], *ap;
double result, *dp;

fsub(i, x, _STRING(s, 15));
fsub(17, 2.7128F, "Hello, world!");
result = ffun(sh, 54.4, a);

ap = malloc(20 * sizeof(float));
result = ffun((short) 25, dp, ap);

The following calls are incorrect and will probably cause errors
during execution for the reasons explained in the comments that
follow the calls:

fsub(i, x, s);

/* The third argument requires a string length */
result = ffun(25, 54.4, a);

/* The first argument should be short instead of int */

Error Handling Considerations

Under OS, creation of the FORTRAN framework requires that a
FTO6F001 DD card be present for FORTRAN error message output.
Any attempt to create the FORTRAN framework will fail if no DD
card is present, possibly without a message being generated. (This
problem does not occur in CMS.)

After some number of run-time errors, the FORTRAN library will
terminate the FORTRAN framework. (See the VS FORTRAN
Programming Guide for more information.) When both FORTRAN and
C are in use and the FORTRAN framework is terminated due to
errors (or due to use of the STOP statement), the C framework is
terminated as well. The C library generates a message in this case to
explain the reason for termination.

External Data Sharing Considerations

When you use the SAS/C NORENT compiler option, you can share
data between FORTRAN and C via COMMON blocks as well as via
subroutine arguments. (Note that there is no reason not to use the
NORENT option when your program contains FORTRAN because
FORTRAN object code is never reentrant.) To share data in this way,
you should declare an extern C structure whose name is the same
as the FORTRAN COMMON block. Each element of the structure
should be defined to be an equivalent data type to the corresponding
FORTRAN variable in the COMMON block. The COMMON must not

Multidimensional
Arrays

Communication with FORTRAN 47

be a dynamic COMMON. For example, the following FORTRAN
COMMON block and C structure allow access to the same data:

COMMON /MYDATA/ I,J,A(40),CH
CHARACTER¥20 CH

extern struct |
int i,3;
float a [40];
char ch [20];
} mydata;

Note that the COMMON block must be declared but not defined in C
because the FORTRAN declarations constitute the definition.

Note that some versions of FORTRAN only accept COMMON blocks
whose names are six characters or fewer. Even for versions of
FORTRAN without this restriction, shared names are limited to eight
characters by the linkage editor’s restrictions on external symbols.

Also, be aware that the SAS/C compiler changes the underscore ()
character in external names to a pound sign (#). For this reason, an
external variable shared between C and FORTRAN should not have
an underscore in its name.

Linking Considerations

Both the FORTRAN and C libraries contain a function named “exit.”
With VS FORTRAN Version 2, the FORTRAN EXIT routine is always
included in the load module, which can lead to problems if a C
function calls the C exit because it will access the FORTRAN
version. C functions that call exit and that can be used with
FORTRAN should include <stdlib.h>, which renames exit to
_C_exit (avoiding conflict with the FORTRAN library). The
<fortmath.h> header file (discussed below) also contains this
redefinition of exit.

There can also be naming conflicts between FORTRAN and C math
routines. For programs that want to use mathematical functions in
both languages, it is possible to call either the C math functions or the
FORTRAN math functions from C. In either case, you should include
the header file <fortmath.h>. The C math functions are then called
as normal; for example, the call exp(4.7) calls the C exp function.
(The header file renames exp to _exp to avoid the naming conflict.)
On the other hand, to call the FORTRAN DEXP function, you should
use the function name F_DEXP. This generates a correct interlanguage
call to the FORTRAN library function. Note that one reason to call the
FORTRAN math library functions from C is to ensure that the same
algorithm is always used for the same function, regardless of whether

the call is from FORTRAN or from C.

Hints

One convenient FORTRAN feature that is not present in C is the
ability to have multidimensional arrays in which the array dimensions
are not known at compile time. This is especially handy for writing or

48 Chapter 4

using functions and subroutines that perform matrix manipulations.
This section gives an example of how to achieve the same effect in C.
Here is a simple fragment of FORTRAN code using this feature:

REAL*Y4 FUNCTION ITEM(A,M,N,I,J)
C Return item I,J of a M by N matrix.
DIMENSION A(M,N)
ITEM = A(I,J)
RETURN
END

Because C requires constant array bounds for all but the last
dimension, this code cannot be duplicated directly in C. However, this
effect can be achieved by treating the two-dimensional FORTRAN
array as a one-dimensional C array and using the C preprocessor to
perform the subscript calculations. Treating the two-dimensional
FORTRAN array as a one-dimensional C array works because
elements are contiguous in each representation and because only the
address of the first element of the array is passed from FORTRAN to
C.
This leads to the following C code:

float item(float a[], int m, int n, int i, int j)
{
#define asub(s1,s2) a[((s2)-1)*m+((s1)-1)]

return asub(i,j);

}

Note that the asub macro compensates for the C language’s use of
zero-based rather than FORTRAN’s one-based array indexing.

This technique of using a one-dimensional C array to “stand in” for
a multidimensional FORTRAN array also can be used conveniently for
array arguments passed from C to FORTRAN, because C arrays are
always passed as pointers to element zero.

49

Communication with
COBOL

49 Introduction
49 Versions Supported
50 Framework Considerations
50 COBOL Data Types
50 Passing Data to C from COBOL
51 PIC X(n) Arguments
51 COMP-3 Arguments
51 Table Arguments
52 Record Arguments
52 Returning Data to COBOL from C
52 Examples: Calling C from COBOL
53 Passing Data to COBOL from C
54 Packed Decimal Arguments
54 char Arguments
54 String Arguments
54 Pointer Arguments
54 Structure Arguments
55 Returning Data to C from COBOL
55 Examples: Calling COBOL from C
56 Restrictions

Introduction

This chapter provides the technical details for using SAS/C ILC with
COBOL. The topics covered are

O the versions of COBOL supported by SAS/C ILC

O execution framework considerations

o COBOL data types and their corresponding types in C
O passing data from COBOL to C and vice versa

O returning data to COBOL from C and vice versa

O restrictions on using the SAS/C COBOL interface.

Many sections include examples of correct and incorrect calls to
each language. These examples, plus the accompanying discussion,
provide the necessary background to write COBOL-C applications.
Before reading this chapter, you should be familiar with the material
in Chapters 1 through 3.

Versions Supported

SAS/C ILC supports communication with programs compiled with
0S/VS COBOL (Version 1) or VS COBOL II (Version 2). At the time

the program is linked, you must specify to ILCLINK which of the two
levels of COBOL is in use.

50 Chapter 5

Table 5.1
COBOL-C Corresponding
Data Types

Framework Considerations

A restriction of VS COBOL II causes COBOL run-time options to be
ignored when mkfmwk is called to create the COBOL framework. If
you need nondefault COBOL run-time options for your application,
you should write the main program in COBOL and use CFMWK to
create the C framework, passing any necessary C run-time options at

this time.

COBOL Data Types

Table 5.1 lists the common COBOL data types and their C equivalents.
Consult this table for general information about corresponding data

types.

COBOL Type C Type
COMP PIC S9(9) int, long
COMP PIC S9(4) short

COMP PIC 9(9)
COMP PIC 9(4)
COMP-1
COMP-2
COMP-3

PIC X

PIC X(n),

PIC DISPLAY
POINTER

01

01 ...

mm ... OCCURS n
TIMES

unsigned int, unsigned long
unsigned short

float

double

no equivalent

char

char [n],

struct (char text [n];}
type *, void *

struct

type [n]

Data types omitted from Table 5.1 have no close equivalent in the

other language.

See Chapter 3, “Communication with Other Languages,” for general
information on data formats and data sharing.

Passing Data to C from COBOL

When you write a C function that can be called from COBOL, you

must do the following:

1. Compile the C function with the INDep option, which is always
required for C functions called from another high-level language.

2. Declare each argument to be a pointer to data of the C type
corresponding to the type of data being passed from COBOL.
(Arguments must be declared as pointers because COBOL uses

call by reference.)

Table 5.2 shows the type that should be declared for the
corresponding C parameter for each COBOL argument type. For
example, the C argument corresponding to a COBOL COMP PIC
S9(4) value should be declared as short *. A Yes in the Special

Communication with COBOL 51

Considerations column indicates that additional information on
passing values of this type is available in the sections following
the table.

Table 5.2

Special
Argument Types for Calls COBOL Type C Type Considerations
from COBOL to C

COMP PIC S9(9) int *, long *
COMP PIC S9(4) short *
COMP PIC 9(9) unsigned int *,

unsigned long *
COMP PIC 9(4) unsigned short *
COMP-1 float *
COMP-2 double *
COMP-3 char (*) [n] Yes
PIC X char * Yes
PIC X(n), char [n], Yes
PIC DISPLAY char *,

struct {

char text [n];}*
POINTER type **, void *x*
01 struct * Yes
01 ... type [n}]
mm ... OCCURS n
TIMES

PIC X(n) Arguments The length of a string passed from COBOL is not available to C.
Therefore, you may want to pass the string length as an additional
argument. Another alternative is to end each string argument with an

unusual character (such as ~) and search for this terminator in the
called C function.

COMP-3 Arguments The pdval and pdset macros can be used to access and modify
COMP-3 (packed decimal) data passed from COBOL. See Chapter 12,

“Using Packed Decimal Data in C,” for information on the use of these
macros.

Table Arguments A table passed from COBOL can be declared either as an array or a
pointer in the called C function. Note that COBOL table declarations
may have subordinate level items that are redundant in C and can be
omitted. For instance, consider the following COBOL table:

01 C-ARRAY.
05 C-ITEM OCCURS 10 TIMES COMP PIC 9(9).

The corresponding C argument can be declared in C as struct
{unsigned item [10]}, unsigned [10], or unsigned *.

As is the case with string lengths, COBOL does not pass information
on the dimensions of tables. These must be passed as additional
arguments if needed by C.

52 Chapter 5

Record Arguments When a COBOL record is passed to C, the C argument should be a
pointer to an equivalent structure. An equivalent structure is a
structure in which each C member matches the corresponding COBOL
item based on the correspondences defined in Table 5.1.

Note that COBOL does not align items in a record unless the
SYNCHRONIZED clause is used. You can use the C compiler option
BYtealign or the keyword __noalignmem to suppress alignment
in C structures corresponding to COBOL records.

Returning Data to COBOL from C

Because COBOL does not provide a way for programs called by
COBOL to return a value, any C function called from COBOL should
be declared as returning void. Because COBOL always uses call by
reference, a C function can modify the areas addressed by its
arguments to pass data back to its caller.

Examples: Calling C from COBOL

Assume the following C function header:

struct cobrec ({
int field1;
char field2; }

void csub(int #*itemsptr,
char comment [20],
struct cobrec *cobrecptr,
unsigned short table [10])

The following call from COBOL to C is correct:

WORKING-STORAGE SECTION.

77 1ITEMS PIC S9(9) COMP.

77 AMOUNT PIC S9(9) DISPLAY.

77 COMMENT PIC X(20).

01 SINGLE.
05 FIELD-1 PIC S9(9) COMP SYNCHRONIZED.
05 FIELD-2 PIC X.

01 SEVERAL.
05 ELEMENT PIC 9(4) COMP OCCURS 10 TIMES.

CALL "CSUB" USING ITEMS COMMENT SINGLE SEVERAL.

Table 5.3
Argument Types for Calls
from C to COBOL

Communication with COBOL 53

The following calls are incorrect and will probably cause errors
during execution for reasons explained in the comments that follow

the call:

CALL "CSUB" USING AMOUNT COMMENT SINGLE SEVERAL.

* ERROR: AMOUNT is USAGE DISPLAY, not USAGE COMPUTATIONAL.
CALL "CSUB" USING ELEMENT (3) COMMENT SINGLE SEVERAL.

* ERROR: ELEMENT has PIC 9(4), and so does not match a C int.

Passing Data to COBOL from C

To call a COBOL routine from C, you must do the following:

1. Declare the COBOL routine in C using the —_cobol keyword,
which informs the compiler that the routine is written in

COBOL.

2. Make sure that each argument is passed correctly to COBOL by
consulting Table 5.3. A Yes in the Special Considerations column
indicates that additional information is available in the sections
following the table. There are two ways an argument can be

passed:

o For argument types without a Special Considerations entry in
the table and for others as described below, the argument can
be passed directly and will be converted automatically by the

compiler.

O Any argument can be passed using a pointer to an appropriate
type of data. This could be a pointer variable or an address
expression using the & or @ operator. In this case, the
compiler makes no attempt at conversion and simply stores

the pointer in the COBOL parameter list.

Note that when calling COBOL, you do not need to use data type
conversion macros such as _STRING.

Special

COBOL Type C Type Considerations
COMP PIC S9(9) int, long
COMP PIC S9(4) short
COMP PIC 9(9) unsigned int,

unsigned long
COMP PIC 9(4) unsigned short
COMP-1 float
COMP-2 double
COMP-3 char ([n] Yes

(continued)

54 Chapter 5

Table 5.3
(continued)

Packed Decimal
Arguments

char Arguments

String Arguments

Pointer Arguments

Structure
Arguments

Special

COBOL Type C Type Considerations
PIC X char Yes
PIC X(n), ‘char [n], Yes
PIC DISPLAY char *,

struct {

char text [n];}
POINTER type *, void * Yes
01 struct Yes
01 ... type [n]
mm ... OCCURS n
TIMES

You can create packed decimal data in C using the pdval macro, as
described in Chapter 12, “Using Packed Decimal Data in C.” Such
data should be stored in a char array whose size is (m+1) /2, where
m is the number of digits declared in COBOL.

The C language definition specifies that a character constant, such as -
'a', has type int rather than type char. For this reason, an
argument that is a character constant will be passed to COBOL
assuming the COBOL argument is COMP PIC S9(9). To pass the value
as a PIC X, use a cast (that is, (char) 'a') or write it as a string
literal rather than as a character literal /that is, as "a").

String literals and character arrays are passed correctly to COBOL
PIC X(n)-arguments without any special effort on your part. Note that
literals should contain at least as many characters as specified by the
COBOL picture. The _STRING macro (as described in Chapter 4,
“Communication with FORTRAN,” and Chapter 6, “Communication
with PL/I”) can also be used but is unnecessary.

If you want to pass a C pointer value to a VS COBOL II POINTER
item, you must use the & or the @ operator. For instance, if recp is a
pointer to a C structure, you must write cobfun(érecp), not
cobfun(recp). (The latter stores the value of recp, not the
address, in the COBOL parameter list.) Similarly, if rec is a C
structure, in order to pass the address of rec to a COBOL POINTER,
you should write cobfun(d&érec), not cobfun(érec).

When a C structure is passed to COBOL, the COBOL argument should
be an equivalent record. An equivalent record is a record in which
each COBOL item matches the corresponding C field based on the
correspondences defined in Table 5.1.

Note that, by default, COBOL does not align items in a record
unless the SYNCHRONIZED clause is used. You can use the C
compiler option BYtealign or the keyword __noalignmem to
suppress alignment in C structures corresponding to COBOL records.

Communication with COBOL 55

Returning Data to C from COBOL

Because COBOL does not provide any way for a program to return a
value to its caller other than by altering a parameter, COBOL
programs called from C should always be declared in C as returning

void.

Note that the COBOL RETURN-CODE special register cannot be
accessed or modified from C.

Examples: Calling COBOL from C
Assume the following COBOL linkage section:

PROGRAM ID. COBSUB.

LINKAGE SECTION.

77
77
77
01

C-ITEMS PIC S9(9) COMP.
C-MESSAGE PIC X(20).
REC-ADDR POINTER.

C-RECORD.

05 FIELD-1 PIC S9(9) COMP.
05 FIELD-2 PIC X.

PROCEDURE DIVISION USING C-ITEMS C-MESSAGE REC-ADDR C-RECORD.

The following call to COBOL from C is correct:

__cobol void cobsub();

int itement;

char comment [20];
_noalignmem struct cobrec {

b

int field1;
char field2;

struct cobrec c_recordl, c_record2, *recordptr;

cobsub(12, comment, 3§c_record!, c_record2);

The following call is incorrect and will probably cause errors during
execution for reasons explained in the comment following the call:

cobsub(itemcnt, "A wrong comment", recordptr, c_record2);

/* ERROR: The string literal is the wrong length (fewer than
20 characters). Also, érecordptr, not recordptr,
should be passed. */

56 Chapter 5

Restrictions
The following restrictions apply when using SAS/C ILC with COBOL:

0 A C function cannot be called dynamically from COBOL. For this
reason, you must use the COBOL compiler option NODYNAM to
compile any COBOL program that calls C.

o0 COBOL requires that all compilations of a run unit be compiled
either with the RESIDENT option or the NORESIDENT option. The
SAS/C COBOL interface includes several COBOL modules that were
compiled with the RESIDENT option. Therefore, you must compile
all COBOL routines in a COBOL-C mixture using this option.

Alternately, you can recompile the SAS/C interface routines
(L$ICB1M and L$ICB1Q for OS/VS COBOL, L$ICB2M and
L$ICB2Q for VS COBOL II) with the NORESIDENT option. Note
that the ENDJOB option is required when you compile L$ICB1M.

57

6 Communication with PL/I

57 Introduction
58 Versions Supported
58 PL/I Data Types
59 Passing Data to C from PL/I
59 FIXED DECIMAL Arguments
60 CHAR(n) Arguments
60 CHAR(n) VARYING Arguments
60 BIT(n) Arguments
60 Array Arguments
60 Structure Arguments
60 Returning Data to PL/I from C
61 Examples: Calling C from PL/I
62 Passing Data to PL/I from C
" 63 char Arguments
64 String Arguments
64 Bit Arguments
64 Pointer Arguments
64 Array Arguments
65 Structure Arguments
65 Function Pointer Arguments
65 Returning Data to C from PL/I
65 Returning CHAR(n) or CHAR(n) VARYING
65 Returning BIT(n)
65 Data Type Conversion Macros
70 Examples: Calling PL/I from C
71 Error Handling Considerations
71 External Data Sharing Considerations
72 Linking Considerations
72 Pseudoregister Removal
72 Restrictions
73 Hints
73 Debugging
73 Calling C Functions That Return a Value

Introduction

This chapter provides the technical details for using SAS/C ILC with
PL/I. The topics covered are

O the versions of PL/I supported by SAS/C ILC

0 PL/I data types and their corresponding types in C
O passing data from PL/I to C and vice versa

O returning data to PL/I from C and vice versa

O data type conversion macros

O error handling considerations

O data sharing considerations

O linking considerations

O restrictions on using the SAS/C PL/I interface

O hints on debugging and calling value-returning C functions
from PL/I.

58 Chapter 6

Table 6.1
PL/I-C Corresponding
Data Types

Many sections include examples of correct and incorrect calls to
each language. These examples, plus the accompanying discussion,
provide the necessary background to write PL/I-C applications. Before
reading this chapter, you should be familiar with the material in
Chapters 1 through 3.

Versions Supported

SAS/C ILC directly supports communication with programs compiled
with the PL/I Optimizing Compiler (Version 1, Release 5), the PL/I
Checkout Compiler (Version 1, Release 3), and OS PL/I (Version 2).
At the time the program is linked, you must specify to ILCLINK which
version of PL/I is in use. If the CMPAT(V1) option of OS PL/I is in
use, you must specify the language as PLI, not PLI2.

The PL/I support is not compatible with the level F PL/I compiler.
If you recompile the PL/I main and termination routines (L$IPL1M
and L$IPLIQ), it should be possible to communicate with earlier
releases of the PL/I Optimizing Compiler. (Source for these routines
can be found in SASC.SOURCE under OS or LSU MACLIB under
CMS.)

PL/1 Data Types

Table 6.1 lists the common PL/I data types and their C equivalents.
You should consult this table for general information about
corresponding data types and to determine how to declare variables
shared between the two languages.

PL/I Type C Type

FIXED BINARY(15) short

FIXED BINARY(31) int, long

FIXED DECIMAL no equivalent

FLOAT DECIMAL(6) float

FLOAT DECIMAL(16) double

CHAR(1) char

CHAR(n), char [n],

PICTURE struct {char text [n];}
CHAR(n) VARYING struct |

short 1len;
char text 7[n];}

BIT(n) no equivalent
POINTER type *, void *
array type []
structure struct

Data types omitted from the table have no close equivalent in the
other language.

See Chapter 3, “Communication with Other Languages,” for general
information on data formats and data sharing.

Communication with PL/I 59

Passing Data to C from PL/I

When you write a C function that can be called from PL/1, you must
do the following:

1. Compile the C function with the INDep option, which is always
required for C functions called from another high-level language.

2. Declare the C function in PL/I as OPTIONS(ASM, INTER). This
means that the C function must be declared in C as returning
void.

3. Declare each argument in C to be a pointer to data of a C type
with the same format as the data being passed from PL/I.
(Arguments must be declared as pointers because PL/T uses
call by reference.)

Table 6.2 shows the type that should be declared for the
corresponding C parameter for each PL/I argument type. For
example, the C argument corresponding to a PL/I FIXED BINARY(15)
variable should be declared as short *. A Yes in the Special
Considerations column indicates that there are special considerations
described in the sections following the table for passing this type of
data.

Table 6.2 Special
Argument Types for Calls PL/I Type C Type Considerations
from PL/I to C

FIXED BINARY(15) short *
FIXED BINARY(31) int *, long *
FIXED DECIMAL char (*) [n] Yes
FLOAT DECIMAIL(6) float *
FLOAT DECIMAL(16) double *
CHAR(1) char * Yes
CHAR(n), char [n], Yes
PICTURE char *,

struct {

char text [n];}*

CHAR(n) VARYING struct { Yes

short 1len;
char text [n];}*

BIT(n) char * Yes
POINTER type **, void ** Yes
ENTRY —pli (*)() Yes
array type [1] Yes
structure struct * Yes

FIXED DECIMAL The pdval and pdset macros can be used to access and modify
Arguments FIXED DECIMAL data passed from PL/I. See Chapter 12, “Using

Packed Decimal Data in C,” for information on the use of these
macros.

60 Chapter 6

CHAR(n) Arguments

CHAR(n) VARYING
Arguments

BIT(n) Arguments

Array Arguments

Structure
Arguments

C arguments representing PL/I CHAR(n) variables can be declared as
char [], char *, or struct {char text[n];}.

The size of a CHAR(n) string passed from PL/I is not available to
C. Therefore, you may want to pass the string length as an additional
argument or pass the data as a CHAR(n) VARYING value. Another
alternative is to end each string argument with an unusual character
(such as ~) and search for this terminator in the called C function.

A C argument corresponding to a PL/I CHAR(n) VARYING string
should be declared as

struct (short len; char text [n];}

The value of the len field is the current string length, and the
characters of text after the current length are undefined.
Information is not available about the maximum string length. If the
called C function requires this information, you should pass it as an
additional argument.

A PL/I BIT(n) bit string can be processed most easily in C as a
char [(n+7)/8] array. The first bit of the string must be on

a byte boundary, which can be forced by use of the PL/I ALIGNED
keyword. The size of the bit string is not available unless it is
passed as an additional argument.

An array passed from PL/I can be declared either as an array or a
pointer in the called C function. The type of the array element or
pointed-to object should have the same data format as the PL/I
element type. For instance, a FLOAT(6) array passed from PL/I
can be defined in C as either float [] or float =*.

The first element of a PL/I array should always be addressed in C
using subscript 0. (By default, PL/I arrays start with element 1, but
this can be changed on an individual array basis.)

You can pass a structure from PL/I to C if the C argument is declared
to be a pointer to an equivalent structure. An equivalent structure is a
structure in which each C member matches the corresponding PL/I
element, using the correspondences defined by Table 6.1. Note that
PL/I uses a different algorithm for aligning structure fields than C;
therefore, you may have to introduce filler items to force the same
mapping. (See “Structure Mapping” in the OS and DOS PL/I Language
Reference Manual for a complete description of the PL/I alighment
rules.)

Returning Data to PL/I from C

C functions must be declared in PL/I as OPTIONS(ASM) to prevent
the generation of PL/I descriptors for arguments. PL/I allows
OPTIONS(ASM) routines to be called only through the CALL
statement, not through functional notation. For this reason, C
functions called from PL/I should always be declared as returning
void. If data are to be returned from C, they should be returned by
storing into the areas addressed by the function’s arguments, rather
than via the return statement.

Communication with PL/I 61

If all function arguments and return values are limited to a small
set of types, it is possible to bypass the OPTIONS(ASM) requirement
and call a C function that returns a value from PL/I. See Calling C
Functions That Return a Value later in this chapter for information
on this.

Examples: Calling C from PL/I

Assume the following C function headers:

void csubi(short *isp, float *xp, char *str)

typedef struct {
short len;
char text [20];
} vstr20;

struct plidata {
int number;
vstr20 name;

b
void csub2(struct plidata *datap, vstr20 *vstrp)

void csub3(struct plidata #*#*ptrp)
The following calls from PL/I to C are correct:

DECLARE (CSUB1, CSUB2, CSUB3) ENTRY OPTIONS(ASM,INTER);
DECLARE IS FIXED BIN(15);
DECLARE X FLOAT(6);
DECLARE STR CHAR(25);
DECLARE LOC POINTER;
DECLARE 1 DATA BASED(LOC),
2 NUMBER FIXED BIN(31),
2 NAME CHAR(20) VARYING;
DECLARE MESSAGE CHAR(20) VARYING INITIAL('Goodbye, world!');
CALL CSUB1(IS, X, 'Hello, world!');
CALL CSUB1(IS, 3.14159E0, STR);
CALL CSUB2(DATA, MESSAGE);
CALL CSUB3(LOC);

The following calls are incorrect and will probably cause errors
during execution for the reasons explained in the comments that
follow the call:

CALL CSUB1(17, X, 'Never mind');
/* ERROR: The first argument should be FIXED BINARY(15)

instead of a FIXED DECIMAL(2) constant */
CALL CSUB1(IS, 3.14159, STR);

/* ERROR: The second argument should be FLOAT(6)
instead of a FIXED DECIMAL(6,5) constant */

62 Chapter 6

CALL CSUB2(DATA, 'Greetings!');

/* ERROR: The second argument should be CHAR VARYING
instead of a fixed length CHAR constant */

To avoid problems such as these, you can give full PL/I declarations
for C routines, as in the following example:

DECLARE CSUB1 ENTRY(FIXED BINARY(15), FLOAT(6), CHAR(*))

OPTIONS (ASM, INTER);

This declaration causes the arguments to be converted appropriately
whenever possible. (For instance, both of the erroneous calls to
CSUBI in this example would be corrected by the presence of this
declaration.)

Passing Data to PL/l from C

To call a PL/I routine from C, you must do the following:

1. Declare the PL/I routine in C using the __pli keyword to

2.

inform the compiler that the routine is written in PL/I.

Make sure each argument is passed correctly to PL/I by
consulting Table 6.3. In Table 6.3, a Yes in the Special
Considerations column indicates that additional information is
available in the sections following the table. There are three
ways an argument can be passed:

0 For argument types without a Special Considerations entry in

the table and for others as described below, the argument can
be passed directly and will be converted correctly by the
compiler.

0 Any argument can be passed using a pointer to an appropriate

type of data. This can be a pointer variable or an address
expression using the & or @ operator. In this case, the
compiler makes no attempt at conversion and simply stores
the pointer in the PL/I parameter list.

Note: If the PL/I argument type is not scalar (arithmetic
or pointer), PL/I expects to receive a pointer to a descriptor
rather than to data. If you pass aggregate arguments directly
using pointers, it is your responsibility to build any necessary
descriptors.

Some arguments should be passed using macros to convert the
argument to the required PL/I data type. For instance, the
—ARRAY macro can be used to specify that an-integer pointer
corresponds to an array argument rather than to a FIXED
BIN(31) scalar. Macros that can be used with particular types
are shown in Table 6.3.

Table 6.3 Argument Types for Calls from C to PL/I

Communication with PL/I 63

Special
PL/I Type C Type Considerations Macro
FIXED BINARY(15) short
FIXED BINARY(31) int, long
FIXED DECIMAL char [n] Yes
FLOAT DECIMAL(6) float
FLOAT DECIMAIL(16) double
CHAR(1) char Yes
CHAR(n), char [n], Yes _STRING
PICTURE char *,
struct {
char text [n];}
CHAR(n) VARYING struct { Yes
short len;
char text [n];}
BIT(n) char * Yes _BIT
POINTER type *, void * Yes
ENTRY (*)(), Yes
—Ppli (*)()
array type [] Yes _ARRAY,
_ARRAY2,
_ARRAY3
array of CHAR(n) char [][n], Yes _STRARRAY
struct {
char text [n];}[]
array of CHAR(n) struct | Yes _STRARRAY
VARYING short 1len;
char text [n];}[]
structure Not supported Yes

char Arguments

The C language definition specifies that a character constant, such as

'a', has type int rather than char. For this reason, an argument
that is a character constant is passed correctly to PL/I, assuming the
PL/I argument is a FIXED BIN(31). To pass the value as a CHAR(1),
use a cast, such as (char)'a', or write the value as a string literal
rather than as a character literal, such as "a".

64 Chapter 6

String Arguments When a C string literal is passed to PL/I, the compiler assumes that

Bit Arguments

Pointer Arguments

Array Arguments

the corresponding PL/I argument is declared to be CHAR(*). In many
cases, the argument is actually a CHAR(*) VARYING. If you use the
SAS/C compiler option VString, all string literals are generated with
a PL/I VARYING string prefix and are passed to PL/I as CHAR(*)
VARYING. If string literals must sometimes be passed as CHAR(*) and
sometimes as CHAR(*) VARYING, you should specify the VString
compiler option and use the _STRING macro when the corresponding
PL/I argument is a CHAR(*).

Fixed-length string arguments

Arguments that are declared in PL/I as CHAR(n) or CHAR(*) should
be passed in one of the following ways:

D using a string literal, such as "abc" (only if the VString option
is not used)

O using a structure of type struct {char text [n];}

O using the _STRING macro, as described in Data Type Conversion
Macros later in this chapter.

Varying-length string arguments

Arguments that are declared in PL/I as CHAR(n) VARYING or
CHAR(*) VARYING should be passed in one of the following ways:

O using a string literal, such as "abc" (only if the vString C
compiler option is used)
O using a structure of type

struct (short len; char text [n];}

To assist in sharing VARYING strings between C and PL/I, the
header file <vstring.h> declares some useful macros for
manipulation of these structures. See Chapter 13, “C Varying-
Length String Macros,” for details.
C data that should be processed as BIT(n) in PL/I should be passed
to PL/T using the _BIT macro, which is described in Data Type
Conversion Macros later in this chapter.

To pass a C pointer value to a PL/I POINTER argument, you must use
the & or a operator. For instance, if dblp is a pointer to a double,
you must write plifun(&dblp), not plifun(dblp). (The latter
stores the value of dblp, not the address, in the PL/I parameter list.)
Similarly, if dbl is a C double, to pass the address of dbl to a PL/I
POINTER, you must write plifun(a&dbl), not plifun(&dbl).

To pass a C array to a PL/I array argument, you must use a macro.
The _ARRAY, _ARRAY2, and _ARRAY3 macros are provided to pass
one-, two-, and three-dimensional arrays, respectively. The
—STRARRAY macro must be used to pass an array of strings.

Note that even though C arrays have lower bound 0, they are
always passed to PL/I with lower bound 1. (For this reason, array
arguments passed from C to PL/I should always be declared in PL/I
with lower bound 1 or *.) This makes it easier to use existing PL/I
routines that process arrays, because they are more likely to access

Structure
Arguments

Function Pointer
Arguments

Returning CHAR(n)
or CHAR(n)
VARYING

Returning BIT(n)

Communication with PL/I 65

data starting with element 1. However, remember that the PL/I
subscript and the C subscript to access the same element differ by 1.

Because of the complexity of PL/I structure descriptors, passing a
structure from C to PL/I is not supported. The most reasonable way
to pass structure data from C to PL/I is to declare a PL/I POINTER
argument, declare the structure as BASED on the pointer, and then
pass the address of the C structure as described in Pointer Arguments
earlier in this chapter.

Either a __p1li function pointer or a standard C function pointer can
be passed to a PL/I ENTRY argument.

Returning Data to C from PL/I

A PL/I function called from C must be declared in C as returning a
value of an appropriate type. If you are calling a PL/I SUBROUTINE
(rather than a FUNCTION, which returns a value) from C, it must be
declared in C as returning void. The following sections describe
special considerations for returning CHAR(n), CHAR(n) VARYING,
and BIT(n) arguments.

A PL/I function that returns CHAR(n) or CHAR(n) VARYING must be
declared in C as returning the appropriate structure type.
The appropriate structure type for CHAR(n) is

struct {char text [n];}
For CHAR(n) VARYING, it is

struct {short len;
char text [n];}

You cannot call a PL/I function returning a BIT string from C. Modify
such functions to store the return value using a BIT argument, and
use the _BIT macro to pass the area in which the result should be
stored.

Data Type Conversion Macros

This section describes the use of data type conversion macros such as
_ARRAY, _BIT, and _STRING with PL/I.

66 Chapter 6

—ARRAY, _ARRAY2,
—-ARRAY3

Pass Array Argument to PL/I

SYNOPSIS

#include <ilc.h>

_ARRAY(type *addr, unsigned dim);

—ARRAY2(type *addr, unsigned dim1, unsigned dim2);

—ARRAY3(type *addr, unsigned dim!, unsigned dim2,
unsigned dim3);

DESCRIPTION

The _ARRAY, _ARRAY2, and _ARRAY3 macros are used to
pass array arguments to PL/I with appropriate descriptors.
—ARRAY builds a descriptor for a one-dimensional array,
—ARRAY2 for a two-dimensional array, and _ARRAY3 for a
three-dimensional array. The array should be an array of
arithmetic or pointer type. String arrays should be passed
using the _STRARRAY macro, described later in this chapter.

The first argument to these macros must be one of the
following: a pointer to the appropriate type, an array of the
appropriate type, or a pointer to an array of the appropriate
type. For instance, if the PL/I array is declared as
(*,*) FLOAT(16), the first argument can be defined in C as
having the type double *, double [n],
double [m][n], or double (*) [n].The number of
dimensions in C is not required to be the same as the number
of dimensions in PL/I. This facilitates the treatment of PL/I
multidimensional arrays as one-dimensional in C, which may
be necessary if the array bounds are not known at compile
time.

The dim arguments specify the upper bounds for each
dimension. The lower bound of each dimension is passed to
PL/T as 1. For instance, the call ARRAY2(x,5,17) passes x
to PL/T as an array whose PL/I dimensionality would be (1:5,
1:17).

EXAMPLE

See Examples: Calling PL/I from C later in this chapter.

Communication with PL/I 67

—BIT Pass Bit Argument to PL/I

SYNOPSIS

#include <ilc.h>
_BIT(void *area, unsigned size);

DESCRIPTION
The _BIT macro is used to pass a C storage area to a PL/I
BIT(n) or BIT(*) argument. The str argument should be a
pointer to the first byte of the area to be passed. (It can be a
string literal.) The 1en argument should be the bit string
length to be passed to PL/I. (That is, a value of 17 indicates
17 bits, not 17 bytes.)

CAUTION
_BIT should be used only for fixed-length BIT strings.

EXAMPLE
Call a PL/I subroutine whose argument is a 32-bit string
from C. The PL/I subroutine is defined as follows:

BITSUB: PROC(BSTR);
DECLARE BSTR BIT(32) ALIGNED;

Two calls, one passing a 4-byte area and one passing a
constant string of bits, are shown below:

_pli void bitsub();

unsigned int bitwork;
bitsub(_BIT(&bitwork, 32));
bitsub(_BIT("\x92\x49\x24\x92",32));

68 Chapter 6

—STRARRAY

Pass String Array Argument to PL/I

SYNOPSIS

#include <ilc.h>

—STRARRAY(struct *addr, unsigned dim);

DESCRIPTION
The _STRARRAY macro is used to pass a string array
argument to PL/I with an appropriate descriptor. The PL/I
array can be an array of either fixed-length or varying-length
strings.
The addr argument must be a pointer to a C structure or
an array of C structures. The structure must be defined as

struct {char text [n];}
for a fixed-length string array or as
struct (short len; char text [n];}

for a varying-length string array. (n is the maximum length of
each array element.)

The dim argument specifies the upper bounds for the
array. The lower bound is passed to PL/I as 1. For instance,
the call _STRARRAY(x, 100) passes x to PL/I as an array
whose PL/I declaration would be (1:100) CHAR(n) or (1:100)
CHAR(n) VARYING.

EXAMPLE
Call a PL/I routine that reads data into an array of varying-
length strings from C. The PL/I routine is defined as follows:

BLDTABL: PROC(TABLE);
DCL TABLE(*¥) CHAR(U40) VARYING;

The array is declared in C as an array of varying string
structures:

—pli void bldtabl();
typedef struct |
short len;
char text ([40];
} vstruo;
static vstrl0 table [500];

bldtabl(_STRARRAY(table, 500));

Communication with PL/I 69

~STRING Pass String Argument to PL/I

SYNOPSIS

#include <ilc.h>

_STRING(char *str, unsigned len);

DESCRIPTION
The _STRING macro is used to pass a char * or char|]
value to a PL/I CHAR(n) or CHAR(*) argument. The str
argument should be a pointer to the first byte of the string
to be passed. (It can be a string literal.) The 1en argument
should be the string length to be passed to PL/I. If 1en is
specified as 0, the string length is determined at execution
time by invoking strlen.

CAUTIONS
_STRING should be used for PL/I fixed-length arguments.
For a varying-length argument, the corresponding C
argument should be a structure, and no macro should
be used.

EXAMPLE
See Examples: Calling PL/I from C later in this chapter.

70 Chapter 6

Examples: Calling PL/I from C
Assume the following PL/I PROCEDURE definitions:

PSUB: PROC(IS, X, STR) /* no value returned */;
DECLARE IS FIXED BIN(15);
DECLARE X FLOAT(6);
DECLARE STR CHAR(*);

PFUND: PROC(VEC, MAT) RETURNS (FLOAT(16));
DECLARE VEC (*) FLOAT(16);
DECLARE MAT (*, *) FLOAT(16);

PFUNS: PROC(LOC) RETURNS(CHAR(20) VARYING);
DECLARE LOC POINTER;
DECLARE 1 DATA BASED(LOC),
2 NUMBER FIXED BIN(31),
2 NAME CHAR(20) VARYING;

The following calls from C to PL/I are correct:

typedef struct |
short len;
char text [20];
} vstr20;

—pli void psub();
—pli double pfund();
—pli vstr20 pfuns();
short sh;
float x;

char *str;

double vec [100];
unsigned nvec;
double *mat;
vstr20 vmsg;

struct |
char text [13];
} message = {"Hello, world!" };

struct plidata {
int number;
vstr20 name;
b
struct plidata namelist [100], *datap;

psub(sh, x, _STRING(str, 15));
psub((short) nvec, 54.4F, message);
mat = calloc(nvec * nvec, sizeof(double));
printf("pfund result is %g\n",

pfund(_ARRAY(vec, nvec), _ARRAY2(mat, nvec, nvec)));
vmsg = pfuns(d(datap+30));

Communication with PL/I 71

The following calls are incorrect and will probably cause errors
during execution, for the reasons explained in the comments that
follow the call:

psub(sh, x, str);
/% ERROR: The third argument requires a string length */
x = pfund(vec, mat);
/* ERROR: The _ARRAY macros must be used to pass arrays
to PL/I */
vmsg = pfuns(énamelist [30]);
/* ERROR: Pointers must be explicitly passed by reference */

Error Handling Considerations

After most kinds of execution error, the PL/I library terminates the
PL/I framework unless the PL/I program provides an ERROR ON unit
to recover. When both C and PL/I are in use and the PL/I framework
is terminated due to errors (or due to use of the STOP or EXIT
statement), the C framework is terminated as well. The C library
generates a message in this case to explain the reason for termination.

External Data Sharing Considerations

When you use the NORENT compiler option, you can share data
between PL/I and C using STATIC EXTERNAL variables in PL/I. To
share data in this way, declare an extern C structure whose name
is the same as the PL/I structure, with each element of the structure
defined to have the same data format as the corresponding PL/I
element. (Note that you may have to introduce padding elements into
the structure definitions to resolve differences between the ways that
C and PL/I map structures.) For example, the following C and PL/I
structures allow access to the same data:

DECLARE 1 SHARED STATIC EXTERNAL,
2 NEXT POINTER,
2 CUST(20),
3 NUMBER FIXED BIN(31),
3 NAME CHAR(20);

extern struct shared t |
struct shared t *next;
struct |
int number;
char name [20];
} cust [20];
} shared;

Note that a shared variable must be declared but not defined in C
because the PL/I declarations constitute the definition.

Also note that the structure name should be seven characters or
less because PL/I does not allow eight-character external names. In
addition, be aware that the SAS/C compiler translates the underscore
(—) character in internal names to a pound sign (#). For this
reason, a shared C external variable with an underscore in its name

must be declared in PL/I with a pound sign in place of the
underscore.

72 Chapter 6

Pseudoregister
Removal

Linking Considerations

If you compile with the C RENT or RENTExt option, the C code
should always be processed by CLINK before linking it with the PL/I
routines, and the CLINK PREM option should be used to remove the
C pseudoregisters. If CLINK is not used, both languages share the
same pseudoregister definitions. If there are only a few small C
external items, this causes no problems, but, usually, C has over 4K
of external data. This prevents successful creation of the PL/I
framework because PL/I does not support a total pseudoregister
length greater than 4K.

Restrictions

Be aware of the following PL/I restrictions when you mix PL/I and C:

O You cannot use PL/I multitasking.

0 Most PL/I programs use the FILE SYSPRINT, which, under OS, is
normally associated with the DDname SYSPRINT. Under OS-batch,
the C file stdout also is normally directed to the SYSPRINT
DDname. Such simultaneous use may lead to garbled or lost output.
You can avoid such conflicts by using output redirection in C to
change the definition of stdout or by reopening SYSPRINT in
PL/T using the TITLE option. Note that PL/I sends library
diagnostics to SYSPRINT, so this can be a problem even for PL/I
code that does not reference SYSPRINT directly.

O You can use PL/I interlanguage communication to FORTRAN or
COBOL in combination with SAS/C communication between PL/I
and C. However, in this case, you cannot communicate with the
same language using both PL/I and C. For instance, a program
structure in which C calls a PL/I routine that calls a COBOL
routine that calls C is not supported.

O You cannot handle attention interrupts in both C and PL/I. You can
either define a SIGINT handler in your C code or compile your
PL/I with the INTERRUPT option and define an ATTENTION ON-
unit, but the effects of doing both are unpredictable. Note that joint
handling of program checks (C SIGFPE, SIGSEGV, and SIGILL,
and PL/I OVERFLOW, UNDERFLOW, and ZERODIVIDE) is
supported. Each language handles only those program checks that
occur in its own code.

0 You should be careful about using GOTO in ON-units in PL/IL. If a
GOTO terminates a C routine, this is not immediately detected and
results in a confusing ABEND later in execution. Similarly, avoid
the use in C of 1longjmp where its use may terminate a called PL/I
routine.

Debugging

Calling C Functions
That Return a
Value

Communication with PL/I 73

You can debug with both the SAS/C source-level debugger and the
PL/I Checkout Compiler or the OS PL/I PLITEST debugger if you are
unsure which language is responsible for an error. However, you
should be aware of the following special considerations:

o In order to use the PLITEST debugger in full-screen mode, PLITEST
must be invoked from an ISPF panel. The full-screen debugging
mode requires ISPF information that is not available when the PL/I
framework is created by mkfmwk. For this reason, you can use
PLITEST in line mode only when C is the first language. If you
want to use PLITEST in full-screen mode, you must define the main
program of your application to be in PL/I and create the C
framework using a call to CFMWK.

o If you are using the Checkout Compiler or if some of your PL/I
code was compiled with the INTERRUPT option, both the PL/I
debugger and the C debugger will attempt to handle attention
interrupts. If the attention key is hit, it is unpredictable whether
the interrupt will be processed by the currently active language. It
is best to avoid the use of the INTERRUPT option in PL/I if you
will be using the C debugger.

O When you use the PLITEST debugger in full-screen mode, it
executes a CLIST named AQAINMS3A to begin full-screen execution.
This CLIST executes a CONTROL NOMSG CLIST statement before
transferring control to the program to be debugged. The CONTROL
NOMSG causes some messages from the C debugger to be
suppressed. To avoid this problem, insert a “CONTROL MSG”
command in the CLIST before the ISPEXEC SELECT command that
starts up the program. This should not have any adverse effects on
the program being debugged or on the PL/I debugger.

0 By default, the PL/I Checkout Compiler allocates all available
storage for its own use, which probably will not leave enough
memory free for the C program or debugger to execute. You should
use the Checkout Compiler SIZE option to leave at least 768K free
for use of the C debugger.

0 When you use the Checkout Compiler with SAS/C ILC, you must
always specify the Checkout Compiler option COMPATIBLE so that
PL/I pointers are represented as 4-byte rather than 16-byte values.

The restriction against calling C functions of a type other than void
from PL/I is due to the PL/I requirement that OPTIONS(ASM)
routines be called as SUBROUTINESs rather than as FUNCTIONS.

In certain cases, OPTIONS(ASM) can be omitted from the PL/I
declaration of a C function, and the C function can be called as a
value-returning function. The requirements for this to be successful
are as follows:

O The data type returned by the C function must be an arithmetic or

pointer type. It cannot be a string type or any type for which PL/I
requires a descriptor.

0 All arguments to the C function must have arithmetic or pointer
type.

74 Chapter 6

O Alternately, other kinds of PL/I data, such as strings or arrays, can
be passed to the C function. However, in this case, the C arguments
must be declared as pointers to the PL/I descriptors, and the
descriptors must be processed by the called C program. PL/I
descriptor formats are discussed in the IBM manuals PL/I
Optimizing Compiler Execution Logic and OS PL/I Version 2 Problem
Determination.

Communication with
Pascal

75 Introduction
76 Versions Supported
76 Pascal Data Types
77 PACKED Arguments
77 Passing Data to C from Pascal
79 ARRAY Arguments
79 STRING Arguments
79 SET Arguments
80 RECORD Arguments v
80 FUNCTION/PROCEDURE Arguments
81 Returning Data to Pascal from C
81 Examples: Calling C from Pascal
83 - Passing Data to Pascal from C
84 Character Literal Arguments
84 ARRAY Arguments
85 STRING Arguments
85 RECORD Arguments
85 SET Arguments
85 Pointer Arguments
86 FUNCTION/PROCEDURE Arguments
86 Returning Data to C from Pascal
87 Data Type Conversion Macros
89 Examples: Calling Pascal from C
91 External Data Sharing Considerations
91 Restrictions
92 Hints
92 Declaring a Called Pascal Routine
92 Interpreting SET Data in C

Introduction

75

This chapter provides the technical details for using SAS/C ILC with

Pascal. The topics covered are

O the versions of Pascal supported by SAS/C ILC

O Pascal data types and their corresponding types in C

O passing data from Pascal to C and vice versa

O returning data to Pascal from C and vice versa

O data type conversion macros

O external data sharing considerations

O restrictions on using the SAS/C Pascal interface

O hints on declaring Pascal routines and processing data in C.

Many sections include examples of correct and incorrect calls to
each language. These examples, plus the accompanying discussion,
provide the necessary background to write Pascal-C applications.

Before reading this chapter, you should be familiar with the material

in Chapters 1 through 3.

76 Chapter 7

Versions Supported

SAS/C ILC supports communication with programs compiled with
Pascal/VS Release 2.2. Routines compiled with earlier versions of
Release 2 should also work correctly.

Routines compiled with other versions of Pascal may work properly
if the LSIPASM and L$IPASQ routines provided in source are
recompiled with the proper version of the Pascal compiler, for
instance, VS Pascal.

Pascal Data Types

Table 7.1 lists the common Pascal data types and their C equivalents.
You should consult this table for general information about
corresponding data types and to determine how to declare variables
shared between the two languages.

Table 7.1

Pascal Type C Type
Pascal-C Corresponding
Data Types CHAR char
PACKED —128..127 signed char
PACKED 0..255 char
BOOLEAN char
INTEGER int, long
PACKED short
—32768..32767
PACKED unsigned short
0..65535
REAL double
SHORTREAL float
ARRAY [1..n] type [n]
OF type
ARRAY [1..n] char [n],
OF CHAR char *,
struct {
char text [n];)}
STRING(n) struct {

enumerated scalar
<=256 values
>256 values

short len;

char text [n];)

char

unsigned short

SET OF type no equivalent
@var type *, void *
RECORD struct

PACKED Arguments

Communication with Pascal 77

Data types omitted from the table have no close equivalent in the
other language. See Chapter 3, “Communication with Other
Languages,” for general information on data formats and data sharing.

The Pascal keyword PACKED is used to specify that an aggregate data
item is to be stored in the minimum number of bytes possible, without
regard to the normal boundary requirements for the individual data
elements. The Pascal alignment rules for unPACKED data are
equivalent to those for C.

For example, an unPACKED RECORD is aligned on the boundary
required by the largest data element within the RECORD, and each
element is aligned as shown in the Pascal/VS Programmer’s Guide. In
a PACKED RECORD, the elements are aligned on byte boundaries, as
is the RECORD itself.

To share PACKED aggregate data, you must be sure that the
corresponding C aggregate is properly aligned. You may be able to use
the C compiler option BYtealign to align data elements within
structures on byte boundaries. In addition, you can use the
_ _alignmem and ___noalignmem keywords when defining a
structure tag to define how structure members should be aligned.
These keywords are described in detail in Chapter 3.

Note that in some cases alignment differences have no effect, such
as when passing a PACKED ARRAY OF REAL. Whether or not an
ARRAY passed to C is PACKED has no effect, unless you are passing
a PACKED ARRAY OF RECORDS. In this case, you need to ensure
proper alignment in C as described in the previous paragraph. There
is no C equivalent for a PACKED ARRAY OF unPACKED RECORDs.

Passing Data to C from Pascal

When you write a C function that will be called from Pascal, you must
do the following:

1. Compile the C function with the INDep option, which is always
required for a C function called from another high-level
language.

. Declare the C function to Pascal as EXTERNAL.

. Validate each argument as follows:

w N

0O Determine the C data type that corresponds to the Pascal data
type using Table 7.2.

O Determine whether you are using pass by reference or pass by
value. Arguments declared as VAR or CONST in Pascal are
passed by reference. If you are using pass by reference for an
argument, declare it in C as a pointer to the appropriate C
data type. It is recommended that you use pass by reference to
avoid the argument list alignment problems that result from
using pass by value. The C alignment rules are described in
detail in Chapter 3.

O Use pass by value for arguments that are not declared as VAR
or CONST to Pascal. If you are using pass by value for an
argument, declare it to be of the appropriate C data type. Note
that pass by value is not supported for some data types. This
is shown in Table 7.2 by an N/A entry. For some types, such
as RECORDs, pass by value is not supported by Pascal. For
other types, such as SHORTREAL, pass by value to C is

78 Chapter 7

impossible because Pascal’s conventions for argument

alignment are different from the C language’s.

O Check that all elements in aggregate data items have the same
alignment in both languages.

Table 7.2 shows the C argument declarations that should be coded

Table 7.2 Argument Types for Calls from Pascal to C

for the Pascal data types when using either pass by value or pass by
reference. For example, a Pascal REAL variable would be declared in
C as double if passed by value or double #* if passed by reference.
A Yes in the Special Considerations column indicates that additional
information on passing values of this type is available in the sections
following the table.

C Type Special

Pascal Type Pass by Value Pass by Reference Considerations
CHAR N/A char *
PACKED N/A signed char *

—128..127
PACKED N/A char *

0..255
BOOLEAN N/A char *
INTEGER int, long int *, long *
PACKED N/A short *

—32768..32767
PACKED N/A unsigned short *

0..65535
REAL double double *
SHORTREAL N/A float *
ARRAY [1..n] N/A type [n], Yes

OF type type *
ARRAY [1..n] N/A char [n],

OF CHAR char *,

struct |{
char text [n];}*

STRING(n) N/A struct { Yes

short len;

char text [n];}*

(continued)

Table 7.2 (continued)

Communication with Pascal 79

C Type Special
Pascal Type Pass by Value Pass by Reference Considerations
SET OF type see below char * Yes
@ var type *, void * type **, void **
RECORD N/A struct * Yes
FUNCTION/ struct | N/A Yes
PROCEDURE __pascal type (*f)();

void *display [6];

} pascal_fp;

ARRAY Arguments

STRING Arguments

SET Arguments

In the following discussions, aggregate data items are assumed to be
unPACKED. If you are working with PACKED data, refer to PACKED
Arguments earlier in this chapter.

Pascal does not support pass by value for ARRAY arguments. An
ARRAY passed from Pascal can be declared in the called C function as
either an array or a pointer. The C array element type or pointed-to
object should have the same data format as the type of the Pascal
element type. For example, an ARRAY [1..10] OF REAL passed from
Pascal could be defined in C as either double [10] or double *.

The first element of an ARRAY passed from Pascal should be
addressed in C using subscript 0.

Pascal does not support pass by value for the STRING(n) type. A C
argument corresponding to a Pascal STRING(n) should be declared as

struct {
short len;
char text [n];}

The value of the 1en field is the current string length. The characters
of text after the current length are undefined. If the called C
function requires information about the maximum string length, you
will need to pass this as an additional argument.

When you declare a C function in Pascal as having a CONST
STRING argument, the argument is passed as if it were declared
STRING(65535). The corresponding C argument should be declared as

struct {
short len;
char text [65535];}*

A C function cannot be declared in Pascal as having a VAR STRING
argument unless a maximum length is specified explicitly. That is, you
can use VAR STRING(n), but not VAR STRING.

Pass by reference is the best way to pass a Pascal SET argument. The
argument can then be declared in C as char *.

80 Chapter 7

RECORD
Arguments

FUNCTION/
PROCEDURE
Arguments

If you must pass a SET argument by value, you need to determine
how your argument is stored in Pascal. The Pascal rules for SET
formats are complicated and differ based on whether or not your
argument is PACKED. For example, given the following Pascal
declarations

A : PACKED SET OF 0..31;
B : SET OF 0..31;

variable A will occupy 32 bits (4 bytes) and variable B will occupy
256 bits (32 bytes). For A, the variable should be declared in C as a
char [4] array. For B, the variable should be declared in C as a
char [32] array. Consult the Pascal/VS Programmer’s Guide to
determine the storage requirements for your argument in order to
code the corresponding C variable. See Interpreting Set Data in C
later in this chapter for an example of accessing a Pascal SET in C.

Because a Pascal RECORD is always passed by reference, you should
declare the argument to be a pointer to an equivalent C structure.
Each member of the C structure must have a data format that matches
the corresponding Pascal field as defined in Table 7.1. Even though
Pascal and C have equivalent boundary alignment rules, it is
recommended that you verify that the RECORD maps correctly onto
the C structure. If your RECORD is PACKED, refer to PACKED
Arguments earlier in the chapter.

Pascal FUNCTION/PROCEDURE arguments are 28 bytes long and
consist of a 4-byte area containing the function address followed by 24
bytes of control information. Function pointers passed from Pascal
must be declared in C as

struct |
—_pascal type (*f)();
void *display [6];
} pascal_fp;

To call the passed FUNCTION/PROCEDURE in C, you code
(*pascal_fp.£f)()

Note that a __pascal function pointer can be used only when it is
an element of a structure, as shown above, because the display
information is an integral part of the function pointer. For instance,
both of the following assignments are erroneous:

—pascal int (*wrong)();
—pascal int func;

wrong = &func; /* will be rejected by the compiler */

Communication with Pascal 81

wrong = pascal_fp.f; /* any use of wrong after this statement */
/* will have unpredictable results */

Returning Data to Pascal from C

You can call a C function from Pascal as a FUNCTION and expect a
return value, as long as there is a data type equivalence listed in
Table 7.1 and C supports returning the data type. The C function
should be declared as returning the equivalent type expected by
Pascal.

Although C does not support returning arrays, if Pascal expects a
(PACKED) ARRAY OF CHAR return value, you can return a fixed-
length string structure from C as shown in Table 7.1. Similarly, if
Pascal expects a STRING(n) return value, you can return the varying-
length string structure shown in Table 7.1.

If you are calling a C function as a PROCEDURE, the C function
must be defined as returning void.

Examples: Calling C from Pascal

Assume the following C declarations:

float cfuni1 (double arrvar [8], unsigned short size,
int *count, double **ptr1, double *ptr2)

typedef struct {
short len;
char text [20];

} vstr20;

typedef struct |
char text [20];

} fxstr20;
void csub2 (char *str, vstr20 *name, char *state)

fxstr20 cfun3()

and the following Pascal declarations:

CONST
ARRSIZE = 8;
SETSIZE = 4;
VSIZE = 20;
TYPE
RARRAY = ARRAY [1..ARRSIZE] OF REAL;:
RPTR = @ REAL;
CARRAY = PACKED ARRAY [1..ARRSIZE] OF CHAR;

STATE = (TX, AL, NY, CA);
STSET = SET OF STATE;
USHORT = PACKED 0..65535;
VSTR = STRING(VSIZE);

82 Chapter 7

VAR
COUNT : INTEGER;
SIZE : PACKED 0..65535;
RARR : RARRAY;
CARR : CARRAY;
SHREAL : SHORTREAL;
PTR1 : RPTR;
PTR2 : RPTR;
BIGST : STSET;

The following Pascal declarations of and calls to C functions are
correct:

FUNCTION CFUN1(VAR RARR : RARRAY;
CONST SIZE : USHORT;
COUNT : INTEGER;
VAR PTR1 : RPTR;
PTR2 : RPTR) : SHORTREAL;

PROCEDURE CSUB2(VAR CARR : CARRAY;
NAME : VSTR;
VAR BIGST : STSET);

FUNCTION CFUN3 : CARRAY;

SHREAL := CSUB1(RVAR, SIZE, COUNT, PTR1, PTR2);
CSUB2(CARR, NAME, BIGST):
CARR := CSUB3;

Because Pascal is very strongly typed, a call to a C function from
Pascal will be correct if the C function is declared correctly. The
following function declarations are incorrect and will likely cause
execution errors if the functions are called, for the reasons explained
in the comments that follow the call:

FUNCTION CSUB1(VAR RARR : RARRAY;
SIZE : USHORT;
COUNT : INTEGER;
VAR PTR1 : RPTR;
PTR2 : RPTR) : SHORTREAL;
(* ERROR: The SIZE argument should be declared VAR or CONST
since the C function expects pass by reference. *¥)

PROCEDURE CSUB2(VAR CARR : STRING(8);
NAME : VSTR;
VAR BIGST : STSET);
(* ERROR: The CARR argument cannot be declared STRING(n)
since the C function expects a character pointer
rather than a string structure. *)

Communication with Pascal 83

Passing Data to Pascal from C

To call a Pascal routine from C, you must do the following:

1.

2.

Declare the Pascal routine in C using the __pascal keyword to
indicate the routine is written in Pascal.

Ensure that each argument is passed correctly to Pascal by using
Table 7.3. For example, the C argument corresponding to a
Pascal PACKED 0..65535 variable should be declared as
unsigned short. In Table 7.3, a Yes in the Special
Considerations column indicates that additional information is
available in the sections following the table. Below are details on
passing arguments to Pascal:

o The compiler uses pass by value by default for calls to
routines declared with the __pascal keyword. If you want to
use pass by value and the argument type does not have an
entry in the Special Considerations column, you can pass the
argument directly.

Note that Pascal does not support pass by value for the data
types RECORD, ARRAY, and STRING(n). For the
corresponding C types, the compiler always uses pass by
reference.

0 If you want to pass an argument by reference and there are
no special considerations for the data type, you can preface
the argument with the ampersand (&) or at (@) operator, or
pass a pointer to the appropriate data type.

0 Some arguments should be passed using macros to convert the
argument to the required Pascal data type. SET arguments
should be passed by value using the _SET macro. The
_STRING macro can be used to pass a character array or
string literal as a (PACKED) ARRAY OF CHAR. In Table 7.3,
the Macro column indicates if there is a macro available or
required to pass an argument of the type.

Table 7.3 Argument Types for Calls from C to Pascal

Special

Pascal Type C Type Considerations Macro
CHAR char Yes
PACKED signed char

—128..127
PACKED char

0..255
BOOLEAN char
INTEGER int, long
PACKED short

—32768..32767
PACKED unsigned short

0..65535

(continued)

84 Chapter 7

Table 7.3 (continued)

Special

Pascal Type C Type Considerations Macro
REAL double
SHORTREAL float
ARRAY [1..n] type [n],

OF type type *
ARRAY [1..n] char [n], Yes —STRING

OF CHAR char *,

struct {

char text [n];}
STRING(n) struct { Yes
short len;

char text [n];}

SET OF see below Yes _SET
type

(@var type *, void * Yes

RECORD struct Yes

FUNCTION/ __pascal type (*)(), Yes

PROCEDURE type (*)()

Aggregate data items are assumed to be unPACKED. If you are
working with PACKED data, refer to PACKED Arguments earlier in
this chapter.

Character Literal The C language definition specifies that a character constant, such as
Arguments 'a’, has type int rather than char. A character constant argument
is passed correctly to Pascal, assuming the Pascal declaration is
INTEGER. To pass the argument as a Pascal CHAR, use a cast such as
(char) 'a’.

ARRAY Arguments Pascal does not support pass by value for ARRAYs. An array passed
to Pascal can be declared either as an array or a pointer in the calling
C function. The type of the array element or pointed-to object should
have the same data format as the Pascal element type. For instance,
either a C float * or float [n] could be passed to a Pascal
routine that expects an ARRAY [n] OF SHORTREAL argument.
Remember that arrays begin with element 0 in C.

STRING Arguments

RECORD
Arguments

SET Arguments

Pointer Arguments

Communication with Pascal 85

Pascal does not support pass by value for STRING(n) arguments. To
pass a STRING(n) argument, you can use a variable-length string
structure as shown in Table 7.3. Because arguments of type CONST
STRING are treated by Pascal as STRING(65535), you can also use a
variable-length string structure for an argument declared in Pascal as
CONST STRING.

To treat all string literal arguments as Pascal CONST STRING, use
the Vstring compiler option as described in Chapter 3. If you need
to pass a string literal of fixed length (such as to a Pascal (PACKED)
ARRAY of CHAR), you can use the _STRING macro.

If you do not use the VString compiler option, string literals are
passed as (PACKED) ARRAY [n] OF CHAR.

SAS/C ILC does not support passing Pascal VAR STRING
arguments.

Pascal does not support pass by value for the RECORD data type. To
pass a C structure that will be processed as a Pascal RECORD, you
should define corresponding elements of the structure/RECORD to
have equivalent data types. The structure will be passed by reference.

In addition, while alignment rules for unPACKED records
correspond between the languages, you should check the alignment of
the individual elements. You can use the C compiler option
BYtealign or the keyword __noalignmem to suppress alignment
in a C structure. This may be useful when working with PACKED
records.

To pass a C storage area as a Pascal SET, you must first determine the
physical size of the SET in order to define a corresponding object in
C. For instance, a Pascal SET that occupies 32 bits could be defined
as an unsigned int or char [4] in C. Consult the Pascal/VS
Programmer’s Guide for information on this topic.

If you want to use pass by reference, pass the address of the
variable using the ampersand (&) or at (3) operator, or the array name
if the C variable is an array. If you want to use pass by value, use the
_SET macro described in Data Type Conversions Macros. See

Interpreting Set Data in C for an example of accessing a Pascal SET
in C.

If you use pass by reference, use the ampersand (§) or at (@) operator
to pass a C pointer to a Pascal pointer (atype) argument. If you use

pass by value, you can pass the pointer. For example, given the C
declaration

int *intptr;

the following statement passes the address of intptr to Pascal:
pasfunc (&intptr)

and this statement passes the value of intptr:
pasfunc (intptr)

The former is appropriate for a VAR or CONST pointer; the latter is
appropriate for a pass-by-value pointer.

86 Chapter 7

FUNCTION/
PROCEDURE
Arguments

When you a call a Pascal routine with a FUNCTION/PROCEDURE
argument, the corresponding C argument can be a C function name or
function pointer, a Pascal function name, or a __pascal function
pointer previously passed to C from Pascal. Here are some examples
of correct calls to a Pascal PROCEDURE with a PROCEDURE
argument:

PROCEDURE PASFUN(PROCEDURE F);

void csub(pascal_£fp)
struct |
—_pascal type (*f)();
void *display [6];
} pascal_fp;

—pascal void pasfun();
—pascal void passub();
void cfun();

void (*cfunptr)();

pasfun(écfun);
pasfun(cfunptr)
pasfun(passub);
pasfun(pascal_fp.f);

Returning Data to C from Pascal

A Pascal PROCEDURE must be declared in C as returning void. A
Pascal FUNCTION must be declared in C as returning a value of the C

type corresponding to its Pascal return type. For example, a Pascal
FUNCTION declared as

FUNCTION X(Y: REAL) : REAL;
must be declared in C as
—pascal double x();

The following special considerations apply:

O A Pascal FUNCTION that returns a STRING(n) value must be
declared in C as returning a value of type

struct |
short len;
char text [n];

}

Communication with Pascal 87

O A Pascal FUNCTION that returns a fixed-length string ((PACKED)
ARRAY [n] OF CHAR) must be declared in C as returning a value
of type

struct {
char text [n];

}

O A Pascal FUNCTION that returns a SET OF type variable must be
modified to store the return value using a SET argument. The SET
should be passed by reference.

Data Type Conversion Macros

This section describes the use of two data type conversion macros,
_SET and _STRING, with Pascal.

88 Chapter 7

—SET Pass SET Argument to Pascal

SYNOPSIS

#include <ilc.h>
—SET(void *area, unsigned size);

DESCRIPTION
The _SET macro is used to pass a C storage area by value to
a Pascal SET argument. The str argument should be a
pointer to the first byte of the area to be passed or a string
literal. The 1en argument should be the number of bits to be
passed to Pascal. (That is, a value of 17 indicates 17 bits, not
17 bytes.) There is 1 bit allocated for each possible element
of the SET. A bit value of 1 indicates that the element is in
the SET. Depending upon whether or not the SET is PACKED
and the type of the SET elements, there may be additional
bits allocated that can never be set.

CAUTION
The method for determining the mapping of a Pascal SET is
complex. Refer to the Pascal/VS Programmer’s Guide for
information on this topic.

EXAMPLE
Call a Pascal procedure that takes a halfword bit string and a

256-byte string as pass-by-value arguments. The Pascal
PROCEDURE is defined as follows:

TYPE SET1
TYPE SET2

PACKED SET OF 0..9; (* 10 bits in C ¥)
SET OF 0..9; (* 256 bits in C *)

PROCEDURE SETSUB(S1 : SET1;
S2 : SET2);

The following sample C code is used to call SETSUB:

—pascal void setsub();
short s1 = 0:

char s2 [32];

/% set bits 0-3 in PACKED SET */
s1 l= 0%£000;

memset(s2, 0x00, 32);
/* set bits 0 and 8 in unPACKED SET */
s2 [0]= s2 [1]= 0x80;

setsub(_SET(és1, 10), _SET(s2, 256));

Note the use of §s1 rather than s 1 above. The first
argument to _SET is the address of the set, not the contents
of the set.

Communication with Pascal 89

_STRING Pass Fixed-Length String Argument to Pascal

SYNOPSIS

g#include <ilc.h>

_STRING(char *str, unsigned len);

DESCRIPTION

The _STRING macro is used to pass a char * or char []
value to a Pascal (PACKED) ARRAY OF CHAR [1en]. The
str argument should be a pointer to the first byte of the
string to be passed. (It can be a string literal.) The len
argument should be the string length to be passed to Pascal.
If 1en is specified as 0, the string length is determined at
execution time by invoking strlen. The string is passed by
reference.

CAUTIONS

_STRING should be used only for (PACKED) ARRAY OF
CHAR arguments, which is not the normal Pascal/VS type for
string processing. For an argument that is processed as a
varying-length string in Pascal (CONST or VAR STRING(n)),
the corresponding C argument should be a structure or string
literal, and no macro should be used.

The C compiler option VString should be used to pass
string literals to Pascal as STRING(n) arguments.

EXAMPLE

See Examples: Calling Pascal from C, below.

Examples: Calling Pascal from C

Assume the following Pascal declarations:

CONST
VECSIZE = 20;
HEADSIZE = 16;

VSIZE = 20;
TYPE
CSHORT = PACKED -32768..32767;

VECTOR

ARRAY [1..VECSIZE] OF REAL;

MATRIX = ARRAY [1..VECSIZE, 1..VECSIZE] OF REAL;
VSTR = STRING(20);

HEADING = PACKED ARRAY [1..HEADSIZE] OF CHAR;
DATA = record

NUMBER: INTEGER;
NAME: VSTIR;
end:

DATAPTR = @ DATA;

90 Chapter 7

PROCEDURE PASUB(ISH: CSHORT;
VAR RSH: SHORTREAL;
CONST MSG: STRING);
EXTERNAL;

FUNCTION PAFUND(VAR VEC: VECTOR;
VAR MAT: MATRIX;
HEAD: HEADING) : REAL;
EXTERNAL

FUNCTION PAFUNS(DPTR: DATAPTR) : VSTR;
EXTERNAL;

The following calls from C to Pascal are correct if compiled using the
vString compiler option:

#include <ilc.h>

typedef struct |
short len;
char text(l1201/);
} vstr2o0;

—pascal void pasub();
—pascal double pafund();
__pascal vstr20 pafuns();
short sh;
float f1;
double v [20], m [20][20];
double val;
vstr20 vmsg;
struct pasrec {

int number;

vstr20 name;
} first_record;
struct pasrec *last_record;

pasub(sh, &fl, "string of any length");

/* This example requires the VString compiler option */
val = pafund(v, m, _STRING("length 16 string", 16));
vmsg = pafuns(éfirst_record);

The following calls are incorrect and will probably cause errors
during execution for the reasons explained in the comments that
follow the call:

pasub((short) 0x0240, 11.32f, first record.name);
/* ERROR: The second arqument must be passed by reference, not
by value */

Communication with Pascal 91

val = pafund(v, m, "length 16 string");
/* ERROR: The third arqument must either be a structure or a
_STRING call. This example would be correct if
the VString compiler option was not used. */

vmsg = pafuns(élast_record);
/* ERROR: The third argument must be passed by value, not
by reference */

External Data Sharing Considerations

When you use the SAS/C NORENT compiler option, you can share
data between Pascal and C using REF/DEF variables in Pascal and
extern variables in C. Because both C and Pascal allow external
variables to be either defined or declared, you can define the data in
either language and declare it in the other. For example, if you use a
DEF variable in Pascal, then you should declare but not define the
variable in C.

If aggregate data are shared, you must be sure that elements are
properly aligned, as described previously.

Because of 370 linkage editor limitations, external variable names
must be eight characters or less. In addition, when you are naming
Pascal routines, be aware that the C compiler translates underscores
(_) in external names to pound signs (#).

Note that global automatic variables of the main Pascal routine
cannot be shared with C functions.

Restrictions

You should be aware of the following restrictions when you mix C
and Pascal:

0 You can use the Pascal interlanguage communication to FORTRAN,
COBOL, or PL/I when you use SAS/C ILC. However, in this case,
you cannot communicate with the same language from both Pascal
and C. For example, if you have a program where Pascal calls
COBOL using the Pascal interlanguage communication support,
your C code cannot call COBOL. Nor, in this case, can COBOL
call C.

0 Joint handling of program checks is supported. Each language
handles only those program checks that occur in its own code. For
example, you can code a SIGFPE handler in C and an ONERROR
PROCEDURE for fixed-point divide by zero exception in Pascal.
Each routine receives control when appropriate.

0 When you use the Pascal debugger, you must use the SAS/C
=multitask run-time option, as described in Error Handling in
Chapter 2, “Multilanguage Framework Management.” This is
because the Pascal debugger uses an unusual style of error
processing that cannot be handled as efficiently by the SAS/C
library as the styles implemented by other languages.

92 Chapter 7

Declaring a Called
Pascal Routine

interpreting SET
Data in C

Hints

If Pascal is not the first language called, no Pascal routine can be
declared as MAIN or REENTRANT, or as a PROGRAM. This is
because the SAS/C library routine responsible for establishing the
Pascal framework (L$IPASM) is a Pascal PROGRAM. The EXTERNAL
directive should be used for Pascal routines called from C.

A Pascal SET is represented as a series of bits. There is 1 bit for each
possible element in the set, which is set to 1 if the element is in the
set. Depending upon whether or not the SET is PACKED and the type
of the SET elements, there may be additional bits allocated that can
never be set.

The following example is a simple Pascal program that initializes
and passes a SET of integers to a C function that prints each element
of the set:

PROGRAM PASSET;

CONST

SETSIZE = 32;
TYPE

STYPE = SET OF 0..SETSIZE-1;

PROCEDURE PRSET(VAR PSET : STYPE;
MAXELEM : INTEGER);
EXTERNAL;

PROCEDURE CFMWK(CONST LANG : STRING;
CONST RTOPT : STRING;
CONST DMOPT : INTEGER;
VAR FMWK : INTEGER);
EXTERNAL;

PROCEDURE DCFMWK(VAR FMWK : INTEGER;
VAR ERRFLG : INTEGER);
EXTERNAL;

Communication with Pascal

VAR
PSET : STYPE;
FMWK : INTEGER;
ERRFLG : INTEGER;

BEGIN

PSET := [1,3,5,7,91];
CFMWK('PASCAL.', '.', 0, FMWK);
PRSET(PSET,SETSIZE);
DCFMWK (FMWK, ERRFLG);
IF ERRFLG <> 0 THEN
RETCODE(8) ;
HALT;

END.

93

Note that the set is passed by reference, while the set size (number of
bits) is passed by value.

Here is a C function to print the set. The inset macro can be used
to test whether or not a value is in any set represented as char * or
char [n] whose lowest possible element value is 0.

#include <stdio.h>

jdefine inset(set, i) ((set[i/8] << (i % 8)) & 0x80)

void prset(char *pset, int maxelem)

{

int i;

for (i = 0; i <= maxelem; ++i) |
if (inset(pset,i)) printf("%d ", i);
putchar('\n');

94

95

Linking Multilanguage
Programs with the ILCLINK
Utility

96
96
96

97
97
98

101

110

113

115

115

117

123
123
124
125

Introduction
Input File
Output Files
97 Terminal Output
97 Listing
97 Utility
ILCLINK Options
Language Codes
ILCLINK Processes
99 PROCESS CLINK and PROCESS LINK Control Statements
99 PROCESS LOAD Control Statement
100 PROCESS GENMOD Control Statement
100 AUTOCALL Libraries
101 Return Codes
Control Statements
101 General Format
101 Format Conventions
101 Summary of Statement Order
102 Comment Statement
102 FIRST Statement
103 LANGUAGE Statement
104 PROCESS Statement
108 AUTOCALL Statement
109 SYSTEM Statement
Usage Notes
110 General Considerations
111 CMS Considerations
112 TSO and OS-Batch Considerations
Running ILCLINK under TSO
113 The ILCLINK CLIST
Running ILCLINK under CMS
115 The ILCLINK EXEC
115 Listing File
115 Utility Files
Running ILCLINK under OS-Batch
115 The ILCLINK Cataloged Procedure
Examples Using ILCLINK Control Statements
118 Statement Notes for Example 8.1
119 Statement Notes for Example 8.2
120 Statement Notes for Example 8.3
121 Statement Notes for Example 8.4
122 Statement Notes for Example 8.5
Interlanguage Communication Support Routines
Examples Using ILC Support Routines
Default Data Set Allocations under TSO
References

96 Chapter 8

Introduction

The interlanguage communication feature defines a number of C
library support routines that must be linked with each program. The
number and names of these routines vary depending on the languages
used to create the program and how the program will be executed. By
automating the linking process, ILCLINK, a multilanguage linking
utility, can simplify greatly the task of producing a multilanguage
module.

ILCLINK reads an input file that contains a description of a
multilanguage program and a sequence of commands that specify how
the program should be linked. As the commands are executed,
ILCLINK selects the appropriate support routines and ensures that
they are included in the final executable module.

ILCLINK does not inspect or modify the program object modules or
load modules. Its purpose is to invoke other utilities, such as CLINK
or the linkage editor, with the desired options and input files. Because
ILCLINK needs only to interpret its control statements in order to do
this, using ILCLINK adds only a very small amount of overhead to the
linking process. In return, ILCLINK ensures that the resulting load
module includes the support routines necessary for interlanguage
communication between C and other high-level languages. The
ILCLINK listing file provides a detailed record of the input and
utilities that were used to create the load module.

The sections that follow explain ILCLINK in detail. The topics
covered include

O the input file and output files

o ILCLINK options

O language codes for directly supported and user-supported languages
o ILCLINK processes

O control statement format and usage

O usage considerations

0 use of ILCLINK under TSO, CMS, and OS-batch

O examples of linking multilanguage programs with ILCLINK

O interlanguage support routines

O default data set allocations under TSO.

This chapter assumes some knowledge of the utilities that are used
to link programs under MVS and CMS, such as the linkage editor and
the CMS LOAD and GENMOD commands. References at the end of
this chapter lists further documentation for these utilities.

Input File

Input to ILCLINK is a sequence of control statements contained in an
input file. The input file can have either variable-length or fixed-
length records. The records can be up to 255 characters long.

Output Files

By default, ILCLINK creates at least three output files. Other output
files can be created by other commands or utilities invoked by
ILCLINK.

Terminal Output

Listing

Utility

Table 8.1
ILCLINK General Options

ILCLINK Utility 97

ILCLINK displays all of its output, including diagnostic messages and
a listing of the input statements, to the terminal under TSO and CMS,
and to a data set under OS-batch. This file is called the terminal file.

Creation of a terminal file can be suppressed by the NOTERM option.

A copy of the terminal output is also written to a listing file. Creation
of a listing file may be suppressed by the NOLIST option.

During its execution, ILCLINK may create a temporary utility file that
contains input to CLINK or the linkage editor.

ILCLINK Options

ILCLINK accepts the options shown in Table 8.1. Default options are
shown in boldface. The minimum abbreviation is shown in uppercase.

Option Description

Warn Display warning messages (that is, diagnostics
associated with return code 4) in the terminal
and listing output files.

NOWarn Do not display warning messages in the terminal
and listing output files.

Term Create the terminal output file.

NOTerm Do not create the terminal output file.

Llst Create the listing file.

NOLIst Do not create the listing file.

Upper Display all messages in uppercase.

NOUpper Display messages in mixed case.

Echo Show all operating system commands issued by

ILCLINK in the terminal and listing output files.

NOEcho Do not show operating system commands in the
terminal and listing output files.

Language Codes

The FIRST and LANGUAGE control statements identify the
programming languages used in the program. These statements accept
a shortened form of the language name. In turn, ILCLINK associates
these names with a three-character code that is used to select the
appropriate ILC support routines.

98 Chapter 8

For example, the three-character code for OS/VS COBOL is CB1. If
a LANGUAGE control statement includes the name COBOL, then
ILCLINK causes the support routine L$ICB1C to be included.
Similarly, the Pascal/VS (code PAS) version of this routine is

L$IPASC.
Table 8.2 shows the codes for the languages supported directly by
ILCLINK.
Table 8.2 Name Used in
Language Codes LANGUAGE and

Language FIRST Statements Code
SAS/C C C$$
PL/I Optimizing Compiler PLI PL1
OS PL/I (Version 2) PLI2 PL2
0S/VS COBOL COBOL CB1
VS COBOL II (Version 2) COBOL2 CB2
VS FORTRAN Version 1 FORTRAN FO1
VS FORTRAN Version 2 FORTRAN2 FO2
Pascal/VS PASCAL PAS

In addition to the codes shown above, ILCLINK creates codes for
user-supported languages by using the first three characters of an
unrecognized name (that is, a name not in Table 8.2) as the code. For
example, if a LANGUAGE control statement includes the name
INTERNAL, then ILCLINK uses INT as the code for the language. If
the name is less than three characters long, ILCLINK adds dollar
signs ($) to the name to make a three-character code. For example,
the code for language Z would be Z$$.

ILCLINK Processes

The processing performed by ILCLINK is generally controlled by
groups of control statements known as processes. This group generally
includes

1. a PROCESS control statement that specifies the utility to be
invoked

2. optional AUTOCALL control statements that identify the
secondary input libraries (object code libraries under OS or
TEXT libraries under CMS) that are to be made available to the
utility

3. optional control statement input for the utility.

Acceptable input statements vary depending on the utility invoked.
The meanings of the AUTOCALL library names and how these names
are used depend upon the associated utility as well as the operating
system under which ILCLINK is running. The following sections
explain the input statements and AUTOCALL libraries in detail.

PROCESS CLINK
and PROCESS LINK
Control Statements

PROCESS LOAD
Control Statement

ILCLINK Utility 99

CLINK and the linkage editor are invoked by the PROCESS CLINK
and PROCESS LINK control statements, respectively. Input statements
for CLINK and the linkage editor can be placed in the ILCLINK input
file following the PROCESS control statement and any AUTOCALL
control statements. These input statements are collected into a
temporary file and passed to the utility as its SYSIN file. The input
statements are translated to uppercase by ILCLINK but not otherwise
modified.

For example, consider the following sequence of statements:

process link list, xref
autocall 1c370,fortlib,mylib
include ccode(maini,subl)
include fortcode(sub2,sub3)
alias project
name progi(r)

The PROCESS control statement invokes the linkage editor with the
options LIST and XREF. The AUTOCALL statement makes the
libraries LC370, FORTLIB, and MYLIB available as SYSLIB input.
ILCLINK collects the four subsequent statements into a temporary file
that contains the following records:

INCLUDE CCODE(MAIN1,SUB1)
INCLUDE FORTCODE(SUB2,SUB3)
ALIAS PROJECT

NAME PROG1(R)

and invokes the linkage editor using this file as SYSIN input.

The PROCESS LOAD control statement invokes the CMS LOAD
command. For this process, the input statements are actually CMS
INCLUDE commands.

For example,

process load mainl (clear rld
autocall 1¢370,fortlib,mylib
include sub1
include sub2 sub3

causes ILCLINK to issue the following sequence of CMS commands:

1. GLOBAL TXTLIB LC370 FORTLIB MYLIB
2. LOAD MAIN1 (CLEAR RLD

3. INCLUDE SUB1

4. INCLUDE SUB2 SUB3

Note: ILCLINK may add additional operands to the commands shown

above, depending on the circumstances. See PROCESS LOAD later in
this chapter.

100 Chapter 8

PROCESS GENMOD
Control Statement

AUTOCALL
Libraries

The PROCESS GENMOD control statement invokes the CMS
GENMOD command. The GENMOD process takes no additional input.

The AUTOCALL libraries named in an AUTOCALL control statement
are used to provide secondary input to CLINK, the linkage editor, and
the LOAD command. Other libraries can be provided via control

language or operating system commands prior to invocation of
ILCLINK.

TXTLIBs as AUTOCALL Iibrariés under CMS

The names used in an AUTOCALL statement are the filenames of
TEXT libraries, or TXTLIBs. During initialization, ILCLINK
determines the names of the current GLOBALed TXTLIBs. Before
ILCLINK invokes CLINK, the LKED command, or the LOAD
command, it issues a GLOBAL TXTLIB command that contains the
names of the previously GLOBALed TXTLIBs and the TXTLIBs named
in the AUTOCALL statements. After the process terminates, ILCLINK
issues another GLOBAL TXTLIB command to “reset” the GLOBALed
TXTLIBs back to the previous state. For example, suppose LC370
TXTLIB and MYLIB TXTLIB are GLOBALed before ILCLINK is
invoked. For the following process,

process load progl
autocall fortlib

. (optional INCLUDE control statements)

ILCLINK issues the commands

GLOBAL TXTLIB LC370 MYLIB FORTLIB
LOAD PROGT ...

. (INCLUDE commands)

GLOBAL TXTLIB LC370 MYLIB

Partitioned data sets as AUTOCALL libraries

The names used in an AUTOCALL statement are DDnames that have
been allocated to object module or load module libraries.

For CLINK, ILCLINK dynamically concatenates these DDnames to
SYSLIB. If SYSLIB has not been allocated, ILCLINK creates a
temporary data set and allocates it to SYSLIB.

For the linkage editor, ILCLINK concatenates the DDnames to
SYSLIB. If SYSLIB has not been allocated, ILCLINK concatenates the
second and subsequent DDnames to the first and passes the first
DDname to the linkage editor as the SYSLIB DDname.

When the utility terminates, ILCLINK deconcatenates the DDnames.
ILCLINK does not change the original SYSLIB concatentation. If the
SYSLIB DDname is allocated when ILCLINK is invoked, then it is
returned to its original state when ILCLINK terminates.

ILCLINK Utility 101

Return Codes ILCLINK terminates if the return code from a utility indicates that the

Format
Conventions

Summary of
Statement Order

output of the utility cannot be used as input to a subsequent process.
These are the maximum allowable return codes for each utility:

o CLINK: 4

O linkage editor: 8

O last LOAD or INCLUDE command: 4
0 GENMOD command: O.

Control Statements

This section summarizes the control statements accepted by ILCLINK.
Each statement is described in terms of

O the action it performs

O where it can be placed in the input file
O how it is used

O an example of its use.

Other control statements, such as linkage editor control statements or

operating system commands, can also appear in the ILCLINK input
file.

ILCLINK control statements are similar to linkage editor control
statements. Each statement is identified by its operation, such as
LANGUAGE or AUTOCALL. The name of the operation must appear
in or after column 2 of the statement and must be followed by one or
more blanks.

Control statements can be entered in either upper- or lowercase.
Except for the SYSTEM statement, ILCLINK control statements cannot
be continued on subsequent lines.

The statement descriptions use the following typographic conventions
to indicate how the statements are coded:

O The operation names are shown in boldface.

O Brackets [] indicate optional operands.

o Other punctuation (such as commas and parentheses) must be
entered as shown.

O An ellipsis (...) indicates that the preceding operand can be repeated
as necessary.

O Italic type indicates fields to be supplied by the user.

In general, each field (operation, operands, and comment) must be
separated by at least one blank. Options in a comma-separated list
should not have embedded blanks.

In general, an ILCLINK input file contains a FIRST statement, one or
more LANGUAGE statements, and one or more processes.

A process consists of a PROCESS statement followed by one or
more optional AUTOCALL statements, which are followed by control
statements or commands that are to be supplied as input to the utility
invoked by the PROCESS statement. A process is terminated by
another PROCESS statement, a SYSTEM statement, or end of file.

102 Chapter 8

The rules governing statement sequence are

O A comment can appear anywhere.

0 SYSTEM statements can appear anywhere.

0 LANGUAGE and FIRST statements must appear before any
PROCESS statements.

0 AUTOCALL statements must appear immediately following the
PROCESS statement with which they are associated.

Comment Comment statements are used to document the actions specified by
Statement other control statements. Comments are displayed in the terminal and
listing file but have no other effect. They can appear anywhere in the
input file. The format of the comment statement is

* comment

Unlike other ILCLINK control statements, the * that indicates a
comment must appear in column 1 of the statement. If a comment is
placed among PROCESS input statements, it is not added to the
process input file.

FIRST Statement The FIRST statement specifies the name and language of the load
module entry point. Either the name or the language can be allowed
to default.

The format of the FIRST statement is

FIRST [entrypoint][(language)] comment

There can be only one FIRST statement in the input file. If used, it
must appear before the first PROCESS statement. If no FIRST
statement is used, ILCLINK assumes that the FIRST language is C and
the entry point name is MAIN.

language is one of the language names listed in Table 8.2 or the
name of a user-supported language.

If used, entrypoint must be a one- to eight-character symbolic name
or an asterisk (*). An asterisk indicates that ILCLINK is to use the
default entry point for the specified language. Table 8.3 illustrates the
default entry points that ILCLINK uses.

Table 8.3 Default Entry Point
Default Entry Points

Language Code Under CMS Under OS
C MAIN MAIN

PLI DMSIBM PLISTART
PLI2 PLISTART PLISTART
COBOL (none) (none)
COBOL2 (none) (none)
FORTRAN (none) (none)
FORTRAN2 (none) (none)
PASCAL PASCALVS PASCALVS

LANGUAGE
Statement

ILCLINK Utility 103

The entry point name can also be specified in a linkage editor
ENTRY control statement or by the RESET option of a CMS LOAD or
INCLUDE command. If the name occurs in more than one location, all
occurrences must agree.

If neither an entry point name nor an asterisk is specified in a
FIRST statement, ILCLINK makes no assumptions about the name of
the entry point.

Examples using the FIRST statement

These examples illustrate the use of the FIRST statement to specify
entry points and languages for main routines:

1. The following statement indicates that the name of the entry
point is STARTUP, which is written in FORTRAN:

first startup(fortran)

2. The statement below indicates that ILCLINK should use
PASCALYVS as the entry point name. The main routine is written
in Pascal.

first *(pascal)

3. This statement indicates that MAIN is the entry point name and
that the main routine is written in C:

first *

4. This statement indicates that the main routine is written in PL/I
Version 2 and that ILCLINK should make no assumptions about
the name of the entry point:

first (pli2)

5. The following statement indicates that the entry point is MAIN
and that the main routine is written in C. This statement
provides the equivalent of the default values used by ILCLINK if
no FIRST statement is used.

first main(c)

The LANGUAGE statement specifies the names of the languages used
in the load module.
The format of the LANGUAGE statement is

LANGUAGE Ilanguagel|,language2...] comment

where language is one of the language names listed in Table 8.3 or
the name of a user-supported language.

There can be any number of LANGUAGE statements in the input
file. All LANGUAGE statements must appear before the first
PROCESS statement. C can be specified in a LANGUAGE statement,
but it is always assumed. The language named in a FIRST statement

104 Chapter 8

PROCESS
Statement

does not need to be named in a LANGUAGE statement, although it is
not an error to do so.

If no LANGUAGE statements are used, ILCLINK assumes that the
only language is C.

The statement below specifies that PL/I and FORTRAN, in addition
to C, were used to produce the object code for the load module:

language pli,fortran

The format of the PROCESS statement is
PROCESS utility[(synonym)] operands

where

utility
is a process name, either CLINK, LINK, LKED, LOAD, or
GENMOD. Each of these utilities is discussed in detail in the
sections following this one.

synonym
is the name of the utility to be invoked for the process. In
general, the synonym field defaults to the name of the
process. However, it can be used when the utility is to be
invoked by an alias or synonym. For example, the following

statement invokes the linkage editor via the alias name
IEWLF128:

process link(iewlf128)

If used, the synonym name must be enclosed by
parentheses and immediately follow the process name, with
no intervening blanks.

operands
are parameters and options for the utility. These can vary
according to the operating system under which ILCLINK is
running. The possible operands for each process are
described below.

PROCESS CLINK

PROCESS CLINK invokes the CLINK object code preprocessor. There
can be only one PROCESS CLINK statement in the input file. If used,
the CLINK process should precede any LINK, LKED, or LOAD
processes.

The format of the PROCESS CLINK statement is
PROCESS CLINK][(synonym)] [option|,option...]] comment

Under CMS, the PROCESS CLINK statement can also have the
format

PROCESS CLINKI[(synonym)] [redirection] [(option [option...]
[) [comment]]]

ILCLINK Utility 105

The default synonym for the CLINK process is CLINK.
Option is a CLINK option. Any of the following options can be used:

PREM NOPREM
TERM NOTERM
AUTO NOAUTO
LIST NOLIST
WARN NOWARN

Note: The AUTO option is only accepted by CLINK under CMS.
For example,

process clink noterm,warn

invokes CLINK with the NOTERM and WARN options.
Under CMS, the options can be preceded with a left parenthesis and
followed by an optional right parenthesis, as in this example:

process clink (noterm noauto

Also under CMS, a redirection parameter, used to redirect CLINK’s
output to a nonterminal file, can precede the CLINK options. For
example,

process clink >clink.map.a (noauto

redirects CLINK’s output to CLINK MAP Al.

Input to the CLINK process can be any statement accepted by
CLINK. For example,

process clink
autocall 1¢370,proglib
include 1ib1(p1,p2,p3)
include 1lib2(pl,p5,p6)
insert namet

causes ILCLINK to invoke CLINK with an input file containing the
following statements:

INCLUDE LIB1(P1,P2,P3)
INCLUDE LIB2(P4,P5,P6
INSERT NAME1

. (INCLUDE ILC object code statements)

As shown above, ILCLINK adds the appropriate CLINK INCLUDE
control statements for ILC object code to the CLINK input file
automatically. These statements are added prior to the first NAME
control statement in the CLINK input file or at the end of the input
file if no NAME statement is used.

A return code greater than 4 from CLINK causes ILCLINK to
terminate.

106 Chapter 8

PROCESS LINK and PROCESS LKED
PROCESS LINK invokes the linkage editor. LKED and LINK can be
used interchangeably. The LINK process should follow the CLINK
process, if a CLINK process is used.

The format of the PROCESS LINK statement is

PROCESS LINK|(synonym)] [option[,option...]] comment
Under CMS, the PROCESS LINK statement can also have the format
PROCESS LINK[(synonym)] [(option [option...][) [comment]]]

where option is a linkage editor option. This example shows some
options under OS:

process link xref, call,let
This example shows the same options under CMS:
process lked (xref call let

The default synonym for the LINK process is LKED (under CMS) or
IEWL (under TSO and OS-batch).

Input to the LINK process can be any statement accepted by the
linkage editor. For example,

process link
autocall 1¢370,proglib
include lib1(p1,p2,p3)
include lib2(p#4,p5,p6
name prog(r)

causes ILCLINK to invoke the linkage editor with a SYSIN file
containing the following statements:

INCLUDE LIB1(P1,P2,P3)
INCLUDE LIB2(P4,P5,P6

. (INCLUDE ILC object code statements)

NAME PROG(R)

If no CLINK process has been used and this is the first LINK
process, ILCLINK adds the appropriate INCLUDE linkage editor
control statements for ILC object code to the SYSIN file automatically.
These statements are added prior to the first NAME control statement
in the SYSIN file or at the end of the SYSIN file if no NAME
statement is found.

Otherwise, if a CLINK process has been used and this is the first
LINK process, ILCLINK adds the CLINK output object code to the
linkage editor SYSLIN input automatically, via an INCLUDE control
statement in the SYSIN file created by ILCLINK.

If the FIRST statement specifies an entry point name and no linkage
editor ENTRY control statement appears in the process input, then
ILCLINK adds an ENTRY statement with the specified entry point

ILCLINK Utility 107

name. As with INCLUDE statements, the ENTRY statement is added
prior to the first NAME control statement or at the end of the SYSIN
file if no NAME statement is found.

A return code greater than 8 from the linkage editor causes
ILCLINK to terminate.

Under CMS, do not use PROCESS LINK and PROCESS LOAD in the
same ILCLINK input file. Doing so causes unpredictable results.

PROCESS LOAD

The PROCESS LOAD statement invokes the CMS LOAD command.
This process can only be used under CMS.
The format of the PROCESS LOAD statement is

PROCESS LOAD[(synonym)] [fname [fname2...]] [(option [option...]
[) [comment]]]

The default synonym is LOAD. fname is the name of a TEXT file.
option is a LOAD command option.

Input to the LOAD process are optional CMS INCLUDE commands.
For example,

process load progmain (clear map noauto
autocall 1c370,mylib

include subl1 sub2 (nodup

include sub3 subi

causes ILCLINK to issue a GLOBAL TXTLIB command to GLOBAL
LC370 TXTLIB and MYLIB TXTLIB. ILCLINK then issues the LOAD
command followed by two INCLUDE commands.

If the FIRST statement specifies an entry point name and no RESET
option has been used, then ILCLINK adds a RESET option with the
entry point name to the last LOAD/INCLUDE statement it issues.

For the first LOAD process in an input file, if a CLINK process has
been used, ILCLINK adds CLINK370 to the end of the list of TEXT
filenames in the LOAD command automatically. If no CLINK process
has been used, ILCLINK issues the appropriate INCLUDE commands
automatically for ILC object code following all of the INCLUDE
commands in the input file.

For example, suppose that a CLINK process has been used and the
FIRST statement specified an entry point name of STARTUP. For the
statements

process load progmain (clear map noauto
autocall 1c370,mylib

include sub! sub2 (nodup

include sub3 subl

ILCLINK issues these commands:

GLOBAL TXTLIB LC370 MYLIB

LOAD PROGMAIN CLINK370 (CLEAR MAP NOAUTO
INCLUDE SUB1 SUB2 (NODUP

INCLUDE SUB3 SUB4 (RESET STARTUP

. (INCLUDE commands for ILC object code)

108 Chapter 8

AUTOCALL
Statement

A return code greater than 4 from the last LOAD or INCLUDE
command causes ILCLINK to terminate.

Do not use PROCESS LINK and PROCESS LOAD in the same
ILCLINK input file. Doing so causes unpredictable results.

PROCESS GENMOD

The PROCESS GENMOD statement invokes the CMS GENMOD
command. This process can be used only under CMS.
The format of the PROCESS GENMOD statement is

PROCESS GENMOD|(synonym)} operands

where operands are the parameters and options for a GENMOD
command.

If the FROM option for the GENMOD command has not been used
in the command, then ILCLINK adds a FROM option automatically
that specifies the name of the first loaded CSECT. The first loaded
CSECT is the first CSECT that appears in the LOAD MAP created by
the LOAD command.

For example, if the name of the first CSECT is MAIN@, then the
statement

process genmod myprog (nomap
causes ILCLINK to issue the following command:
GENMOD MYPROG (NOMAP FROM MAIN?

A GENMOD process is complete on the PROCESS GENMOD
statement. No AUTOCALL statements can follow a PROCESS
GENMOD statement. No other input is expected.

If no LOAD process is used, the GENMOD process is ignored.

A return code greater than 0 from the GENMOD command causes
ILCLINK to terminate.

The AUTOCALL statement specifies secondary input libraries (SYSLIB
data sets or GLOBALed TEXT libraries) for the CLINK, LINK, LKED,
and LOAD processes.

The format of the AUTOCALL statement is

AUTOCALL library1|,library2...] comment

There can be any number of AUTOCALL statements following a
PROCESS statement. If more than one is used, no other statements
(except comment statements) can appear between AUTOCALL
statements.

The libraries specified in an AUTOCALL statement are made
available to the process only for the duration of the process. The
libraries are added to the list of secondary input libraries before the
process executes. . When the process terminates, the libraries are
removed from the list of secondary input libraries.

ILCLINK Utility 109

Under TSO and OS-batch, the following statement causes the
DDnames LC370 and MYLIB to be concatenated to SYSLIB. Under
CMS, LC370 TXTLIB and MYLIB TXTLIB are added to the list of
GLOBALed TXTLIBs.

autocall 1c370,mylib

SYSTEM Statement The SYSTEM statement specifies a string that is to be issued as a
command to the operating system.
The format of the SYSTEM statement is

SYSTEM command

SYSTEM commands are issued via the C system function. The first
nonblank character following the word SYSTEM is considered to be
the start of the command. The command string is not translated to
uppercase before being passed to system.

Unlike other ILCLINK statements, SYSTEM statements can be
continued on subsequent lines. To continue a SYSTEM statement, add
a plus sign (+) at the end of the line. All characters up to, but not
including, the plus sign are considered to be part of the command.
Leading blanks on continuation lines are not included in the
command.

When ILCLINK is used under TSO, the tso: prefix is added to the
command before it is issued.

Examples using the SYSTEM statement

These examples illustrate the use of the SYSTEM statement under
TSO and CMS:

1. Under TSO, the statement
system ALLOC FI(LIBTWO) DA(LIBTWO.OBJ) SHR REUSE
causes the string
"ts0:ALLOC FI(LIBTWO) DA(LIBTWO.OBJ) SHR REUSE"

to be issued as an operating system command via the system
function.
2. Under CMS, the statement

system filedef libtwo disk os txtlib c +
dsn sascuser libtwo obj (perm

causes the string
"filedef libtwo disk os txtlib c dsn sascuser libtwo obj (perr

to be issued as an operating system command via the system
function. ’

The SYSTEM statement causes message LSCI020 to be issued,
which displays the return code from the command. The return
code from commands issued via the SYSTEM statement is
otherwise ignored.

110 Chapter 8

General
Considerations

The SYSTEM statement is not honored under OS-batch. An
attempt to use a SYSTEM statement in this environment causes
warning message LSCI040 to be issued.

Usage Notes

1.

The return code from ILCLINK is the maximum return code
from all individual control statements. ILCLINK terminates if the
return code from any individual statement exceeds 8.

. Because the CLINK process always writes to the same output

file, use only one CLINK process per invocation of ILCLINK.

. If you use a CLINK process, it must precede all LINK processes.
A,

Failure to do so causes unpredictable results.

. The ILCLINK input file can specify multiple LINK, LOAD, or

GENMOD processes. (In fact, this technique can be necessary
under CMS if more than one TEXT library must be used as
SYSLIB input to the linkage editor.) ILCLINK includes the ILC
support routines in the CLINK process or the first LINK process.

. Although the object modules generated by most compilers can be

preprocessed by CLINK, it is more efficient to omit these
modules from the CLINK process. CLINK the C object modules
separately, and then link the non-C object modules and the
CLINK output with a LINK or LOAD process.

. In a program that contains object modules produced by either

the PL/I Optimizing Compiler or by the OS PL/I Version 2
compiler, do not preprocess the PL/I object modules with
CLINK. Both the C object modules and the PL/I object modules
can contain pseudoregisters, and it is important that the
pseudoregisters for each language be handled separately. In
practice, the simplest way to do this is to force CLINK to
“remove” the C pseudoregisters before linking the C object
modules with the PL/I object modules, as follows:

a. If the C object modules were created using the RENT or
RENTEXT compiler option, preprocess the object modules
with CLINK, using the PREM option.

b. Link the PL/I object modules with the CLINK output object
module.

The PL/I message
IBM00O5I TOO MANY FILES AND CONTROLLED VARIABLES

indicates the need to run CLINK to remove C pseudoregisters.

. ILCLINK does not add the C library to the AUTOCALL list

automatically. Access this library by either explicitly naming it in
an AUTOCALL control statement, adding it to the SYSLIB
concatenation, or naming it in a GLOBAL TXTLIB command.

. The cFMWK function is usually included automatically in the load

module, but you may need to explicitly include it if it is called
unnecessarily. An example of an unnecessary call to CFMWK is a
C function that calls a PL/I routine that calls CFMWK. (Although
the call to CFMWK is superfluous, it is not an error for the PL/I
routine to call CFMWK in this situation.) CFMWK can be explicitly
included by naming it in a linkage editor INCLUDE control
statement or in a CMS LOAD or INCLUDE command.

CMS
Considerations

10.

ILCLINK Utility 111

. ILCLINK always adds the libraries named in an AUTOCALL

control statement to the autocall libraries (if any) that were
available prior to its invocation. These libraries can be allocated
to SYSLIB via an ALLOCATE command (under TSO), named in a
GLOBAL TXTLIB command (under CMS), or named in a SYSLIB
DD statement (under OS-batch). Libraries specified in one of
these ways precede all other libraries and are available to all
processes.

ILCLINK does not check for the presence of a linkage editor or
LOAD command control statements in object or load modules.
For example, suppose that an object module contains a linkage
editor ENTRY control statement. If the name specified in the
ENTRY statement conflicts with the name specified in the FIRST
statement, ILCLINK does not detect the conflict. Usually, the
linkage editor or LOAD command issues an error message for
this situation.

. The LOAD command may issue numerous messages of the form

DMSLIO202W Duplicate identifier identifier

when loading multilanguage programs. These messages do not
indicate a problem and can be suppressed by using the NODUP
option on the PROCESS LOAD control statement.

. OS/VS COBOL and the PL/I Optimizing Compiler generate

an ENTRY control statement that does not have a blank in
column 1. CLINK and the LOAD command accept this statement,
but the LKED command does not. You must use the compiler
option OSDECK to create an object module that contains an
ENTRY control statement beginning in column 2.

. Generally, all compiler-generated object modules use an ENTRY

control statement or some other mechanism to force the correct
entry point for that language to be chosen by the LKED or LOAD
command. In a multilanguage program, you must use the RESET
option of the LOAD command or an ENTRY control statement to
specify the correct symbolic name for the entry point. If you
specify an entry point name in a FIRST control statement,
ILCLINK ensures that the correct entry point is selected.

. The GENMOD command may not start at the lowest address

when saving the module. This most often occurs when an
external reference has the same name as the entry point name.
Use the FROM option for the GENMOD command to specify the
symbolic name of the lowest address in the program. (Examine
the LOAD MAP file produced by the LOAD command to
determine the name of the first CSECT.) If the PROCESS
GENMOD control statement does not contain a FROM option,
ILCLINK adds a FROM option using the first name in the LOAD
MAP.

. CLINK may produce the message

LSCL603 Warning: multiple occurrences of PLISTART
routine in library.

when processing C and PL/I object modules. This message does
not indicate a problem.

. ILCLINK invokes CLINK directly. It does not invoke the CLINK

EXEC.

112 Chapter 8

TSO and 0S-Batch
Considerations

1.

. If more than one TEXT library has been concatenated to SYSLIB,

the LKED command ignores all but the first library. If more than
one TXTLIB is named in an AUTOCALL statement for a LINK
process, ILCLINK generates a FILEDEF for each TXTLIB, using
the CONCAT option, but issues the following diagnostic:

LSCIO030 Warning: Concatenated SYSLIB FILEDEFs are not
supported by the LKED command.

. ILCLINK does not issue a GLOBAL TXTLIB command for more

than eight TXTLIBs when running under Releases 3 and 4 of
CMS. When running under later releases of CMS, ILCLINK does
not issue a GLOBAL TXTLIB command for more than 256
TXTLIBs.

The ILC support routines are available in both object module
and load module format. These data sets are named
SASC.ILCOBJ and SASC.ILCSUB, respectively. The object module
format is used as input to CLINK, and the load module format is
used as input to the linkage editor. The ILCLINK CLIST
command and the ILCLINK cataloged procedure allocate these
data sets to ILCLIB (object modules) and ILCSLIB (load

modules). The ILC support routines are included from ILCLIB if
a CLINK process is used. If there is no CLINK process, the ILC
support routines are included from ILCSLIB.

. ILCLINK adds autocall libraries to the SYSLIB concatenation in

the order they are named in the AUTOCALL control statements.
To prevent errors caused by differing data set block sizes
(SYNAD EXIT errors in the linkage editor, for example), ensure
that the data set with the largest block size is the first data set in
the concatenation. BLKSIZE=3200 is the largest block size
accepted by the linkage editor.

. Do not use the same DDname in both an AUTOCALL control

statement and a linkage editor INCLUDE control statement. This
usually causes ILCLINK to issue message LSCI042 and terminate
with a return code of 8.

. If the ILCLINK CLIST is executed in batch, the SYSTERM

DDname is allocated to SYSOUT instead of the terminal.

. Under TSO, ILCLINK avoids the use of the SYS prefix for

DDnames by using TSC as the first three characters of the
preassigned DDnames. For example, ILCLINK uses TSCPRINT
instead of SYSPRINT as the DDname for printed output from
CLINK and the linkage editor.

. Under TSO, printed output from CLINK is written to the

CLNKLIST data set. Printed output from the linkage editor is
written to the LINKLIST data set. Override these default

destinations by allocating the DDname TSCPRINT to another
data set either before invoking the ILCLINK CLIST command

The ILCLINK CLIST

ILCLINK Utility 113

(which causes both CLINK and linkage editor printed output to
be written to that data set) or by using a SYSTEM control
statement to allocate TSCPRINT to your preferred data set before
the PROCESS CLINK and PROCESS LINK control statements.

Running ILCLINK under TSO

The format of the ILCLINK CLIST command is
ILCLINK dsname [(options]
where

dsname
is the name of a data set containing ILCLINK control
statements. The data set can be a sequential data set or a
member of a partitioned data set. If the data set belongs to
another user, the fully qualified name of the data set must be
specified and enclosed in apostrophes. If the data set name is
not fully qualified, the ILCLINK CLIST adds the user’s prefix
and a final qualifier of DATA, if necessary.

options
are any ILCLINK options. (Refer to ILCLINK Options, earlier
in this chapter, for a list of ILCLINK options.)

For example,
ILCLINK ilc(prog1) noterm echo

invokes ILCLINK, using ILC.DATA(PROG1) as the name of the input
data set. The options used are NOTERM and ECHO.

ILCLINK CLIST data set options

The ILCLINK CLIST accepts several options that can be used to
specify the names of the output data sets. Each option takes a data set
name as its value.

In general, if the data set belongs to another user, the fully qualified
name of the data set must be specified, and preceded and followed by
three apostrophes. For example,

LOAD('''SASCUSER.ILC.LOAD(PROG1)''")

If the data set name is not fully qualified, the ILCLINK CLIST
prefixes the data set name with the user’s prefix and adds a final
qualifier determined by the option. For example,

CLKOBJ(ILC)

causes ILCLINK to use prefix.ILC.OBJ as the name of the CLINK
output data set.

CLKOBJ (ILC.CLINK)

causes ILCLINK to use prefix.ILC.CLINK.OBJ as the name of the
CLINK output data set.

114 Chapter 8

The data set options are listed below. The minimum abbreviation
for each option is shown in uppercase.

CLKobj (dsname)
specifies the name of the CLINK output data set. The data set
can be a sequential data set or a member of a partitioned
data set. The final qualifier is assumed to be OBJ. If not
explicitly specified, the CLIST supplies this qualifer
automatically.

LOad (dsname)
specifies the name of the output load module. The data set
name must be a member of a partitioned data set. If the
name is not fully qualified and a final qualifier of LOAD is
not specified, and then the CLIST assigns a final qualifier of
LOAD.

If LOAD is not used and the name of the input data set is
not fully qualified, the CLIST derives a load module data set
name by replacing the final DATA of the input data set name
with LOAD. Similarly, if the input data set is a member of a
partitioned data set, the CLIST assigns the member name of
the input data set as the member name of the load module
data set. If no member name can be determined, the member
name is selected by the linkage editor.

For example, if the CLIST is called as follows:

ILCLINK ilc(progt)

then the name used for the load module data set is
ILC.LOAD(PROG1).

PRint (dsname)

specifies the name of the ILCLINK listing file. The data set
must be a sequential data set. The final qualifier is assumed
to be ILCLIST. If not explicitly specified, the CLIST supplies
this qualifier automatically.

PRINT(*) specifies that the listing file is to be displayed on
the terminal. This option implies NOTERM and is effectively
the same as using NOLIST and TERM.

NOPRint
indicates that a listing file is not to be created. This is the
default. NOPRINT is the same as NOLIST.

ILCLINK concatenates the data sets named in AUTOCALL control
statements to SYSLIB. For PROCESS CLINK, if the SYSLIB DDname
has not been allocated, ILCLINK creates a temporary data set and
allocates the SYSLIB DDname to it. This temporary data set is created
as if the following ALLOCATE command has been issued:

ALLOCATE NEW TRACK SPACE(1,0) DIR(1) +
RECFM(F B) BLKSIZE(3200) LRECL(80)

The ILCLINK EXEC

Listing File

Utility Files

The ILCLINK
Cataloged
Procedure

ILCLINK Utility 115

Running ILCLINK under CMS

The format of the ILCLINK EXEC is
ILCLINK filename [options]

where
filename
is the filename of the input file. The filetype of the input file
must be ILCDATA. The input file may be on any disk.
options

are any ILCLINK options.

For example,
ILCLINK prog! (nowarn echo

invokes ILCLINK, using PROG1 ILCLINK * as the fileid of the input
data set. The options used are NOWARN and ECHO.

ILCLINK EXEC loads ILCLINK as a Nucleus Extension so that other
commands can execute in the user area. When ILCLINK terminates,
the EXEC drops the Nucleus Extension.

The listing file produced by ILCLINK is written to the A disk, using
the same filename as the input file and a filetype of ILCLOG.

The temporary utility file used by ILCLINK is created on the A disk,
using a filetype of TEXT. The filename of the file is the same as the
filename of the input file, prefixed with a dollar sign ($).

Running ILCLINK under OS-Batch

The ILCLINK cataloged procedure contains the JCL shown below:

//ILCLINK PROC

//LKED EXEC PGM=ILCL,REGION=1536K

//STEPLIB DD DSN=sasc.load,DISP=SHR C COMPILER LIBRARY

// DD DSN=sasc.linklib DISP=SHR C RUNTIME LIBRARY

//*
VA T S P T
//% DATA SETS NEEDED BY ILCLINK *kk

J7RFRFFEREAERER KRR AR AR R AR KAk Kok ook ok ok ok kR kKR KRRk Kk KRRk Rk Rk K
/7%

//ILCPRINT DD SYSOUT=* DCB=(RECFM=VBA K LRECL=137,BLKSIZE=3200)

//ILCUT1 DD DSN=§&ILCUT1,UNIT=SYSDA,SPACE=(800,(5,5)),

/7 DCB=BLKSIZE=800

/1%

[/ RRkkkkokkkokokokokokokkokokokokokkokokokkkokokokokokkkokokokkokokokkokokokkokokkkokkokokkkkokkkkkkkkkkk Kk
//* DATA SETS NEEDED BY CLINK AND LINKAGE-EDITOR *kk

77 RFFE KA KA KR KRk ok ok ok ok ok ok ok ok kR o ko ok Kok o ok ok 3R R KRR KR R Rk ok Rk K
/7%

//ILCLIB DD DSN=sasc.ilcobj,DISP=SHR

//ILCSLIB DD DSN=sasc.ilcsub,DISP=SHR

116 Chapter 8

//SYSPRINT DD SYSOUT=#,DCB=(RECFM=FBA,6LRECL=121,BLKSIZE=1210)
//SYSTERM DD SYSOUT=#*

//SYSLIN DD UNIT=SYSDA,DSN=§§CLKOUT,SPACE=(3200,(20,20)),
/7 DCB= (RECFM=FB, LRECL=80 , BLKSIZE=3200)

//SYSUT1 DD DSN=§&SYSUT!,UNIT=SYSDA,SPACE=(3200,(100,20))
//SYSLMOD DD DSN=§&LOADMOD (MAIN),DISP=(,PASS),UNIT=SYSDA,

/7 SPACE=(1024,(50,20,1))

Note that the names of the data sets shown in italics may be
changed by the installation. Ask your SAS Software Representative for
C compiler products for more information.

The following example shows typical JCL needed to run ILCLINK.
The PARM.LKED value passes options to ILCLINK. Separate the
option names with blanks, not commas. In the example, the options
used are NOWARN and ECHO.

//ILCLINK JOB jobcard information

//STEP1 EXEC ILCLINK,PARM.LKED='NOWARN ECHO'
//LKED.SYSLMOD DD DISP=OLD,DSN=your.load.library
//LKED.1ib DD DISP=your.autocall.library
//LKED.ILCIN DD *

. (ILCLINK control statements)

/%
//

DD statements needed to run ILCLINK

The number of data sets used by ILCLINK varies according to the
number of different AUTOCALL libraries used and the processes run.
Eight data sets have preassigned DDnames. These data sets are
described below.

The ILCPRINT DD statement is required if the LIST option is used
(it is the default). This statement describes the listing data set that
contains ILCLINK’s printed output, including a listing of the input file
and any diagnostic messages. The default specification for this data set
is SYSOUT=".

The ILCUT1 DD statement is always required. This statement
describes the temporary utility data set used by ILCLINK to contain
input to CLINK or the linkage editor. Space must be allocated for this
data set, but the DCB requirements are supplied by ILCLINK.

The ILCLIB DD statement is required if PROCESS CLINK is used.
This statement describes the data set that contains ILC interface
routines in object code format.

The ILCSLIB DD statement is required if PROCESS CLINK is not
used. This statement describes the data set that contains ILC interface
routines in load module format.

The SYSTERM DD statement is required if the TERM option is used
(it is the default) or if any process produces SYSTERM output. This
statement describes the data set used to contain ILCLINK’s terminal
file and any SYSTERM output from CLINK or the linkage editor. The
default specification for this. file is SYSOUT=".

The SYSLIN DD statement is required if PROCESS CLINK is used.
This statement describes the data set used to contain the CLINK

ILCLINK Utility 117

output object code, which is subsequently used as input to the linkage
editor. The data set can be sequential or partitioned. The BLKSIZE of
this data set must be no less than 3200.

The SYSUT1 DD statement is always required. This statement
describes the intermediate data set used by the linkage editor. This
data set must be a sequential data set. Space must be allocated for this
data set, but the DCB requirements are supplied by the linkage editor.

The SYSLMOD DD statement is always required. This statement
describes the output load module library for the linkage editor. The
data set must be a partitioned data set. For more information about
this DD statement, refer to the appropriate documentation for the
linkage editor. (See References later in this chapter.)

Additional DD statements

Each DDname specified in an ILCLINK AUTOCALL control statement
or a linkage editor INCLUDE or LIBRARY control statement must be
described with a DD statement. The data sets described by these
statements must conform to the expectations of the associated utility,
either CLINK or the linkage editor.

Temporary SYSLIB

For PROCESS CLINK, if the SYSLIB DD statement has not been used,
ILCLINK creates a temporary data set and allocates the SYSLIB
DDname to it. This temporary data set is issued as if the following DD
statement has been used:

//SYSLIB DD DISP=(NEW,DELETE),SPACE=(3200,(1,0,1)),
/1 DCB=(RECFM=FB,BLKSIZE=3200, LRECL=80)

Examples Using ILCLINK Control
Statements

In all of the following examples, the ILCLINK control statements are
shown in uppercase. Other statements are shown in mixed case. This
convention is used for readability only, because ILCLINK accepts
input in both upper- and lowercase.

Data set names or fileids used for compiler-related files that are
shown in lowercase are examples. These.names do not necessarily
match the names used for the data sets or files that should actually be
used. Typically, the names used for these files are chosen by each
individual installation.

Example 8.1 shows a simple use of ILCLINK under TSO; Example
8.2 gives the equivalent statements under CMS. Examples 8.3, 8.4,
and 8.5 show how to allocate the necessary DDnames under TSO,
CMS, and OS-batch, respectively.

Example 8.1 shows a sample input file that describes a program
that was created using both C and OS/VS COBOL. The initial function
is the C main function.

118 Chapter 8

Example 8.1
Sample OS and TSO
ILCLINK Program

Statement Notes
for Example 8.1

FIRST MAIN(C) @
LANGUAGE COBOL @

*

PROCESS LINK MAP,LIST,TERM,RMODE=24, AMODE=24 @)
AUTOCALL LC370,C0BLIB @

include cobj(ch2,ch2c) @

include cblobj(ch2cob)

name ch2(r)

. The FIRST control statement identifies the name of the entry

point (MAIN) and the language in which it is written (C). This
entry statement specifies the same entry point information as
ILCLINK would have used if a FIRST control statement had not
appeared in the input file.

. The LANGUAGE control statement indicates that COBOL was

used to create some of the object modules. C is implied, both by
its use in the FIRST statement and by default. (ILCLINK always
assumes that C was used to create some or all of the object
modules.)

. The PROCESS LINK control statement invokes the linkage editor.

The MAP, LIST, TERM, RMODE=24, and AMODE=24 options
are used.

. The AUTOCALL statement gives the DDnames of two autocall

libraries, LC370 and COBLIB. For this example, LC370 is
allocated to the C resident library and COBLIB to the COBOL
library using the equivalent of the following ALLOCATE
commands:

ALLOCATE FILE(LC370) DA('sasc.obj') SHR
ALLOCATE FILE(COBLIB) DA('sys1.coblib') SHR

before ILCLINK is invoked.

. These three statements are passed to the linkage editor, along

with INCLUDE control statements added by ILCLINK for the ILC
interface routines. Because a CLINK process is not used,
ILCLINK includes these routines in load module format, using
the DDname ILCSLIB. After these statements are added, the
SYSIN file created by ILCLINK is

INCLUDE ILCSLIB(L$ICB1X,L$ICBIC,L$ICB1Q,L$ICBIL)
INCLUDE ILCSLIB(L$ICB1F,L$ICB1F)

INCLUDE ILCSLIB(L$IMIXD)

INCLUDE ILCSLIB(L$ICB1P)

INCLUDE COBJ(CH2,CH2C)

INCLUDE CBLOBJ(CH2COB)

ENTRY MAIN

NAME CH2(R)

Note that ILCLINK adds a linkage editor ENTRY control
statement that names the entry point specified by the FIRST
control statement.

ILCLINK Utility 119

The COBJ and CBLOBJ DDnames are allocated, either via a
TSO ALLOCATE command or a DD statement, prior to invoking
ILCLINK.

Example 8.2 is the same as Example 8.1, except that the PROCESS
LOAD and PROCESS GENMOD control statements are used to create
a CMS MODULE file.

Example 8.2
Sample CMS ILCLINK FIRST MAIN(C) @
Program LANGUAGE COBOL @

*

PROCESS LOAD CH2 CH2C CH2COB (NODUP G’
AUTOCALL LC370,COBLIBVS
*

PROCESS GENMOD CH2 @

Statement Notes 1. The FIRST control statement identifies the name of the entry
for Example 8.2 point (MAIN) and the language in which it is written (C). This
entry statement specifies the same entry point information as
ILCLINK would have used if a FIRST control statement had not
appeared in the input file.

2. The LANGUAGE control statement indicates that COBOL was
used to create some of the object modules. C is implied, both by
its use in the FIRST statement and by default. (ILCLINK always
assumes that C was used to create some or all of the object
modules.)

3. The PROCESS LOAD and AUTOCALL control statements cause
the following CMS commands to be issued (assuming that no
TXTLIBs had been GLOBALed prior to invoking ILCLINK):

GLOBAL TXTLIB LC370 COBLIB
LOAD CH2 CH2C CH2COB (NODUP

ILCLINK issues the following INCLUDE commands after the
LOAD command completes:

INCLUDE L$ICB1X L$ICB1C L$ICB1Q LSICBIL
INCLUDE L$ICB1M L$ICBIF

INCLUDE L$IMIXD

INCLUDE L$ICB1P (RESET MAIN

These commands cause the ILC interface routines to be loaded.
Note that ILCLINK adds a RESET option to the last INCLUDE
command to specify the entry point named in the FIRST
statement.

4. The PROCESS GENMOD control statement invokes the
GENMOD command to create a module named CH2 MODULE
Al.

Example 8.3 uses the SYSTEM control statement to allocate the
required DDnames under TSO. The VS FORTRAN Version 1 compiler
was used to create some of the object modules in the program. The
entry point is written in FORTRAN.

120 Chapter 8

Example 8.3
Allocating DDnames for
ILCLINK under TSO

Statement Notes
for Example 8.3

FIRST F1(FORTRAN) @

LANGUAGE C,FORTRAN @

*

SYSTEM ALLOC DD(COBJ) DA('SASCUSER.ILC.OBJ') SHR @
SYSTEM ALLOC DD(LC370) DA('sasc.obj') SHR

*

PROCESS CLINK @

AUTOCALL LC370

include cobj(fic)

*

SYSTEM ALLOC DD(FORTOBJ) DA('SASCUSER.ILC.0BJ') SHR @
SYSTEM ALLOC DD(FORTLIB) DA('sysi.vfortlib') SHR

*

PROCESS LINK MAP,LIST,TERM, RMODE=24,6AMODE=24 (@
AUTOCALL FORTLIB

include fortobj(f1,£1£3,£1f4)

name f£1(r)

*

SYSTEM FREE DD(COBJ,LC370,FORTOBJ,FORTLIB) @

1. The FIRST control statement specifies that the name of the entry

point is F1 and that it is written in FORTRAN.

2. The LANGUAGE control statement identifies the two languages

used to create the program. Note that this statement is
superfluous, because FORTRAN is named in the FIRST
statement and C is always assumed.

3. These SYSTEM statements cause the TSO ALLOCATE command

to be invoked. The LC370 DDname is allocated to the C resident
library, SASC.OBJ.

4. These three statements invoke CLINK. SASCUSER.ILC.OBJ(F1C)

is the only C object module.

5. As in the previous SYSTEM statements, these SYSTEM

statements invoke the ALLOCATE command.

6. These statements invoke the linkage editor using the options

MAP, LIST, TERM, RMODE=24, and AMODE=24. FORTLIB is
allocated to an autocall library. As before, ILCLINK adds
INCLUDE control statements for the appropriate ILC interface
routines and an ENTRY control statement to identify the entry
point name. The SYSIN input to the linkage editor is

INCLUDE ILCLIB(L$CICMN)
INCLUDE ILCLIB(L$IFO1X,L$IFO1C,L$IFO1Q,LEIFOIL)
INCLUDE ILCLIB(L$IMIXD)
INCLUDE ILCLIB(L$IFO1P)

INCLUDE SYSLIN (CLINK OUTPUT)
INCLUDE FORTOBJ(F1,F1F3,F1F4)
ENTRY F1

NAME F1(R)

ILCLINK Utility 121

7. This SYSTEM control statement invokes the FREE command to
free the DDnames that are allocated.

Example 8.4 uses the SYSTEM control statement to issue FILEDEFs
for the required DDnames under CMS. The VS FORTRAN Version 1
compiler was used to create some of the object modules in the
program. The entry point is written in FORTRAN. (This example is
equivalent to Example 8.3 for TSO users.)

Example 8.4
Allocating DDnames for FIRST F1(FORTRAN) @
ILCLINK under CMS LANGUAGE C,FORTRAN @
*
PROCESS CLINK ©
AUTOCALL LC370
include f1ic
*
SYSTEM FILEDEF FORTOBJ DISK MYILC TXTLIB * @
SYSTEM FILEDEF FORTLIB DISK vsfort txtlib *
SYSTEM FILEDEF SYSLMOD DISK MYILC LOADLIB A1 (RECFM U BLKSIZE 6144
*
PROCESS LKED (MAP LIST TERM @
AUTOCALL FORTLIB
include fortobj(f1,f1£3,£1f4) @
name f1(r)
*

SYSTEM FILEDEF FORTOBJ CLEAR i’

Statement Notes 1. The FIRST control statement specifies that the name of the entry
for Exampie 8.4 point is F1 and that it is written in FORTRAN.

2. The LANGUAGE control statement identifies the two languages
used to create the program. Note that this statement is
superfluous because FORTRAN is named in the FIRST statement
and C is always assumed.

3. These statements invoke CLINK. F1C TEXT is the only C object
module.

4. These SYSTEM control statements issue the FILEDEFs needed by
the LKED command.

5. These statements cause ILCLINK to issue the following FILEDEF
command for autocall input to the LKED command:

FILEDEF SYSLIB DISK fortlib txtlib *
and invoke the following LKED command:
LKED $xxxxxxx (MAP LIST TERM

where $xxxxxxx is the name of the temporary SYSIN file created
by ILCLINK.

6. These statements form part of the SYSIN input to the LKED
command. After ILCLINK adds INCLUDE statements for ILC
support routines and CLINK output and adds an ENTRY

122 Chapter 8

Example 8.5
Allocating DDnames for
ILCLINK under OS-Batch

Statement Notes
for Example 8.5

statement, the LKED SYSIN file contains these statements:

INCLUDE L$CICMN

INCLUDE L$IFO1X,L$IFO1C,L$IFO1Q,L$IFOIL
INCLUDE L$IMIXD

INCLUDE L$IFO1P

'INCLUDE CLINK370 (CLINK OUTPUT)
INCLUDE FORTOBJ(F1,F1F3,F1F4)

ENTRY F1

NAME F1(R)

7. This SYSTEM control statement clears the FORTOBJ FILEDEF
issued in statement 6. The FORTLIB and SYSLMOD FILEDEFs
are cleared by the LKED command.

Example 8.5 is the same as Example 8.3, except that it shows the
JCL required to execute ILCLINK under OS-batch. The required
DDnames are allocated using DD statements.

The VS FORTRAN Version 1 compiler was used to create some of
the object modules in the program. The entry point is written in
FORTRAN.

//EXAMPLE JOB jobcard information

//STEPONE EXEC ILCLINK

//LKED.SYSLMOD DD DISP=SHR,DSN=SASCUSER.ILC.LOAD
//LKED.COBJ DD DISP=SHR,DSN=SASCUSER.ILC.OBJ
//LKED.LC370 DD DISP=SHR,DSN=sasc.obj
//LKED.FORTOBJ DD DISP=SHR,DSN=SASCUSER.ILC.OBJ
//LKED.FORTLIB DD DISP=SHR,DSN=syst.vfortlib
//LKED.ILCIN DD *

/*

FIRST F1(FORTRAN) @

LANGUAGE C,FORTRAN @

*

PROCESS CLINK @

AUTOCALL LC370

include cobj(fic)

*

PROCESS LINK MAP,LIST,TERM,RMODE=24, AMODE=24 @
AUTOCALL FORTLIB

include fortobj(f1,£1£3,£1£4)

name f1(r)

//

1. The FIRST control statement specifies that the name of the entry
point is F1 and that it is written in FORTRAN.

2. The LANGUAGE control statement identifies the two languages
used to create the program. Note that this statement is
superfluous because FORTRAN is named in the FIRST statement
and C is always assumed.

3. These three statements invoke CLINK. SASCUSER.ILC.OBJ(F1C)
is the only C object module.

ILCLINK Utility 123

4. These statements invoke the linkage editor using the options
MAP, LIST, TERM, RMODE=24, and AMODE=24. FORTLIB is
allocated to an autocall library. ILCLINK adds INCLUDE control
statements for the appropriate ILC interface routines and an
ENTRY control statement to identify the entry point name. The
SYSIN input to the linkage editor is

INCLUDE ILCLIB(L$CICMN)

INCLUDE ILCLIB(L$IFO1X,L$IFO1C,L$IFO1Q,L$IFOIL)
INCLUDE ILCLIB(L$IMIXD)

INCLUDE ILCLIB(L$IFO1P)

INCLUDE SYSLIN (CLINK OUTPUT)

INCLUDE FORTOBJ(F1,F1F3,F1F4)

ENTRY F1

NAME F1(R)

Interlanguage Communication Support
Routines

This section explains the internal rules that ILCLINK uses to select
the interlanguage communication support routines. In general, it is
not necessary to be familiar with these rules. However, this
description is provided for programmers who are developing advanced
multilanguage applications.

The major service peformed by ILCLINK is the inclusion of a
number of support routines for the interlanguage communication
feature. For a given program, the support routines that are needed
vary according to

O the number and combination of languages used to create the
program
O the language used for the entry point of the program.

ILCLINK uses the following rules to determine which service
routines are needed. (The characters xxx in the routine names should
be replaced by an appropriate language code. See Table 8.2 for the
language codes used by ILCLINK.)

o If C is not used for the entry point, include L§CICMN.

O For each language used in the program other than C, include
L$IxxxX, L$IxxxC, L$IxxxQ, and L$IxxxL.

O For each language used in the program other than C and the
language used for the entry point, include L$IxxxF and L$IxxxM.

o If any language other than C is used, include L$IMIXD.

O If exactly two languages are used to create the program, include
L$ IxxxP.

O If more than two languages are used to create the program, include
L$IMIXP.

Examples Using ILC Support Routines

The following examples illustrate the rules above:

1. SAS/C is the only language in the program. No ILC support
routines are included.

124 Chapter 8

2. SAS/C and VS FORTRAN Version 1 were used to create the

program. The entry point is in C. In this case, the necessary
routines are

L$IFO1X, L$IFO1C, L$IFO1Q, L$IFOIL (rule 2)
L$IMIXD (rule 4)
L$IFO1P (rule 5)

. SAS/C and VS FORTRAN Version 1 were used to create the

program. The entry point is in FORTRAN. In this case, the
necessary routines are

L$CICMN (rule 1)
L$IFO1X, L$IFOIC, L$IFO1Q, L$IFOIL (rule 2)
L$IMIXD (rule 4)
L$IFO1P (rule 5)

. SAS/C, the OS PL/I Optimizing Compiler, and VS COBOL II

were used to create the program. The entry point is in COBOL.
In this case, the necessary routines are

L$CICMN (rule 1)

L$IPL1X, L$IPL1C, LSIPL1Q, L$IPLIL (rule 2)
L$IPL1F, L$IPLIM (rule 3)

L$ICB2X, L$ICB2C, L$IPL1Q, L$ICB2L (rule 2)
L$IMIXD (rule 4)

L$IMIXP (rule §5)

Under CMS, each routine is in a separate TEXT file. The
filename of each TEXT file matches the routine name. Under OS,
the object code versions of the routines are members of the
SASC.ILCOBIJ data set, and the load module versions are
members of the SASC.ILCSUB data set. For more information
about these data sets, refer to your SAS Software Representative
for C compiler products.

Default Data Set Allocations under TSO

Table 8.4 shows the default data set sizes and DCB parameters used
by ILCLINK when creating new data sets under TSO.

Table 8.4 Default Data Set Size Values

Block Space Allocation DCB Parameters
DDname Type Size Primary Secondary RECFM LRECL BLKSIZE
SYSPRINT Track — 10 5 FBA 121 1210
SYSLIN Block 3200 20 20 FB 80 3200
SYSUT1 Block 1024 200 50 — — —
SYSLMOD Block 1024 50 20 — — —

ILCLINK Utility 125

Note that the default size values can be changed by the site. For
more information, ask your SAS Software Representative for C
compiler products.

Where no defaults are specified, the DCB parameters are
determined by CLINK or the linkage editor.

References

Information about the utilities and commands discussed in this
chapter can be found in the following publications:

SAS Institute Inc., SAS/C Compiler and Library User’s Guide. Cary, NC:
SAS Institute Inc., 1988.

International Business Machines Corporation, MVS/Extended
Architecture Linkage Editor and Loader User’s Guide, IBM Publication
GC26-4011.

International Business Machines Corporation, OS/VS Linkage Editor and
Loader, IBM Publication GC26-3813.

International Business Machines Corporation, Virtual Machine/System
Product CMS Command Reference, IBM Publication SC19-6209.

International Business Machines Corporation, Virtual Machine/System
Product CMS for System Programming, IBM Publication SC24-5286.

126

127

Debugging Multilanguage
Programs

127 Introduction
127 ILC User ABENDs
128 ABEND 1233
128 ABEND 1234
128 ABEND 1235
128 Other ABENDs
128 Finding the Point of ABEND
129 Common Pitfalls
131 Incorrect Results
131 Incorrect File Output
132 Miscellaneous Tips
132 FORTRAN Tips
133 COBOL Tips
133 PL/I Tips
134 Pascal Tips

Introduction

Debugging a multilanguage application can be more difficult than
debugging a single-language program because errors made in one
language may affect the behavior of other languages and because
many errors that are easy to make have unpredictable consequences.
This chapter offers some debugging hints for multilanguage programs,
focusing on symptoms and solutions that are unique to interlanguage
communication. General debugging techniques are given first,
followed by specific tips for each language supported by SAS/C ILC.
Additional debugging information, such as a detailed explanation of
each ILC run-time message, can be found in Appendix 1, “ILC Library
Diagnostic Messages.”

Note that errors in a multilanguage program might not have
anything to do with interlanguage communication. For instance, I/0
problems, such as errors reading a data file, are solved the same way
whether the program is in one language or several. Having multiple
languages in a program adds complexity, but it is not the only area in
which mistakes can be made.

Also note that even though this chapter is organized according to
problem symptoms, you should read all of it. Errors are discussed in
association with their usual effect, but, because of the complexity of
ILC, the same error does not always produce the same outcome. For
instance, an error that normally causes an 0C4 or 0C5 ABEND by
storing at a random location might sometimes instead cause incorrect
output.

ILC User ABENDs

User ABENDs with codes 1233, 1234, and 1235 are issued by the
SAS/C library when certain severe error conditions are detected. Note
that in addition to the causes listed, any of these ABENDs can occur if

128 Chapter 9

ABEND 1233

ABEND 1234

ABEND 1235

Finding the Point of
ABEND

the program overlays library storage, though this would be unusual.
The SAS/C debugger command STORAGE or the run-time option
=storage can be used to detect many library storage overlays.

A 1233 ABEND indicates an error in the SAS/C library, unless
storage has been overlaid. If your program generates this ABEND, you
should note any error messages generated before the ABEND, save the
dump if one was generated, and call the Technical Support
Department at SAS Institute.

A 1234 ABEND indicates that you have made an interlanguage call to
a language whose framework has not been created. The following are
the most likely reasons for this ABEND:

0 You failed to call mkfmwk before calling a non-C routine from C, or
failed to call CFMWK before calling a C function from some other
language.

o0 You made an interlanguage call after deleting the framework of the
called language with d1fmwk or DCFMWK.

0 A previous call to mkfmwk or CFMWK failed, and your program
neglected to check for an error. In this case, if the quiet function
was not used, you should have received a message from the SAS/C
library (or from the other language’s library) explaining why the
framework could not be created.

A 1235 ABEND indicates a library-detected error other than a call to
a language whose framework has not yet been created. Before the
ABEND, the C library generates a diagnostic message describing the
error. Possible causes for this ABEND include the following:

O A longjmp or out-of-block GOTO was used to terminate a routine
in a language other than the one that issued the jump or GOTO.

O A routine in another language was called from C and was not
declared with an appropriate keyword (such as __fortran).

O A call to another language was made while the program was
terminating (possibly from an atexit routine).

0 The program attempted to call another language from more than
one coprocess.

o No memory was available to process the argument list in a call to a
routine in another language.

Other ABENDs

When a multilanguage program ABENDs with an ABEND code other
than those described above, the first necessary debugging task is to
determine the language in which the ABEND occurred. Note that you
may get tracebacks or diagnostic messages from all active languages,
and that the language that sends the first message is not necessarily
the one that caused the ABEND.

When an ABEND occurs in a language other than C, the SAS/C
library writes the message LSCX051, giving the name of the language
that ABENDed. If you do not receive this message, the ABEND
occurred while the C framework was active. (If you are running C
under TSO, this message may not be sent to the terminal unless your

Common Pitfalls

Debugging Multilanguage Programs 129

TSO profile specifies WIPMSG. Use of this profile attribute is
recommended to ensure that you receive all ILC messages.)

Occasionally, when an ABEND occurs in another language, the
SAS/C library is unable to allow the ABEND to proceed without either
changing the point of ABEND as observed by the other language, or
changing the ABEND code. Since changing the point of ABEND could
make the other language’s diagnostics useless, the library instead
changes the original ABEND code to 0C6, giving an odd address
within one byte of the actual point of ABEND. When this takes place,
the library issues message LSCX052 (“ABEND xxx reinstated as 0C6”)
to inform you of the original ABEND code. See Appendix 1, “ILC
Library Diagnostic Messages,” for more information on this message.

When you get one or more tracebacks for a multilanguage program
ABEND, note that each language’s traceback includes only routines
written in that language, plus SAS/C library interface routines. In a C
traceback, these routines and their purposes are labeled so that if you
also have a traceback in the other language, you can put the two
together to obtain a complete picture of the calling sequence at the
time of ABEND. See the discussion of framework switching in Chapter
2, “Multilanguage Framework Management,” for further information
on calling sequences and save area chaining.

After you have successfully found the point of ABEND, you can
investigate further by using normal debugging techniques for the
language in which the ABEND occurred.

ABENDs in multilanguage programs are frequently the result of a few
common errors. If you do the following, you can avoid many of these
errors:

o Compile C functions called from non-C with INDep.

Make sure argument types agree.

Check function return types.

Make sure the module is linked with the correct entry point.
Include only one main routine.

0ooonD

The sections that follow discuss in more detail the effects of not
following these steps.

Failure to compile with INDep

When another language calls a C function that was not compiled with
INDep, the called function is unable to locate the C framework. This
results in an immediate ABEND, usually an 0C1 or 0C4 ABEND.
Because the called function is unable to locate the C framework, the
ABEND appears to be an ABEND in the calling language, not in C.
Further, the ABENDing language may not be able to produce useful
information about the location of the failure.

You should always check for this particular mistake when you have
an 0Cx ABEND in another language where the other language is
unable to determine the point of ABEND.

Incompatible argument types

Failure to define compatibly the data types of arguments to a
subroutine with the types expected can lead to almost any kind of
ABEND. For instance, an integer passed as a pointer can cause an
0C4 ABEND, and an integer passed as packed decimal can cause an

130 Chapter 9

0C7 ABEND. Consult the tables on data type compatibility in the
appropriate non-C language chapter to ensure that all arguments are
declared and passed properly. Also, make sure that each argument is
passed correctly by value or by reference, whichever is expected by
the called language. For example, a scalar argument declared as VAR
in Pascal must be explicitly passed by reference from C.

Failure to use a required data type conversion macro such as
_STRING when calling PL/I from C can also cause random ABENDs
because PL/I may interpret an actual data address as a descriptor
address. Similarly, failure to declare a C function in PL/I as
OPTIONS(ASM) may cause errors because C may interpret a pointer
to a descriptor as a pointer to data instead.

One way to check for argument mismatch problems of this sort is to
print out the value of each argument on entry to a troublesome
subroutine, using a debugger or print statements in the code. An
argument that prints erroneously or that causes an ABEND during
printing can be investigated in more detail. If you debug by adding
I/0 statements to the code, it is best to print each argument with a
separate statement and to separate each output line from the previous
one by several blank lines. This makes it less likely that successfully
printed lines will be in a buffer (and therefore not written) when an
ABEND occurs.

Function return type mismatches

A subtle cause of errors is a call from one language to another where
the declared types of the return value are not compatible. This occurs
most frequently with calls to a C function from a non-C routine,
where the C function does not return a value. Such functions must be
declared as returning void in C. When a C function that returns no
value is called from C, the code works correctly even when the
function is not declared void. However, when a function that returns
no value is called from another language, a random return value is
stored if the function is not properly declared void. Even worse, if
the calling language is PL/I or Pascal, the return value is stored in a
random location because the caller has not passed the address of a
return area. This may cause an immediate ABEND or may overlay
other data, causing unpredictable results at a later time.

This sort of error can also occur for calls from C to another
language, such as a PL/I routine that returns a FIXED BINARY result
but that is declared in C to return void.

Incorrect entry points

If a multilanguage load module has an incorrect entry point due to an
incorrect ILCLINK FIRST statement, the program almost certainly will
ABEND shortly after starting execution. It may ABEND before any
language framework has been successfully established, which means
that no traceback or useful diagnostics are produced. Frequently, the
ABEND resulting from this error is an 0C7.

An ABEND that produces neither diagnostics nor traceback from
the language of the main routine but produces them for some other
language is very likely to be an entry point error.

For best results, you should always explicitly specify a FIRST
control statement in your ILCLINK input file. If you do not have a
FIRST statement, ILCLINK assumes that the program entry point is in
C. If the entry point is in some other language, the error will

Debugging Multilanguage Programs 131

probably not be detected at link time. That is, an executable load
module will be produced with no unusual ILCLINK, linkage editor, or
loader messages, even though the load module does not run
successfully.

Using more than one main routine

If you create a multilanguage program with more than one main
routine, the results are unpredictable and may depend on the
languages in use and the exact method by which the program is
linked. Some possible results of this error are as follows:

o A random 0Cx type of ABEND occurs, either when a framework is
created or later during an interlanguage call.

0 The framework for a language other than the first fails to be
initialized successfully.

o Two frameworks are created for the same language. This can
produce quite puzzling results. For instance, C external variables or
FORTRAN dynamic COMMONSs might seem to have two sets of
values.

0 Even though mk fmwk indicates success, C is unable to find the
created framework later, resulting in a user ABEND 1234.

g One of the secondary main routines is executed during a call to
mk fmwk, with unpredictable data in the argument list.

If your application has more than one main routine, you must
change all but the first one executed so that the rest are no longer
main routines. For instance, rename a C main function or change a
FORTRAN PROGRAM statement to a SUBROUTINE statement.

Incorrect Results

When a multilanguage program produces incorrect results, you should
check for some of the same pitfalls as for an ABEND. Arguments or
return values declared incorrectly frequently produce incorrect results
rather than an ABEND. You can investigate such problems in exactly
the same way as you would an ABEND, by printing out argument
values before and after a call, to determine whether all are being
passed correctly.

Incorrect results can also occur as the result of storage overlays. If
the value of a variable changes when the variable is not shared, or if
no references have been made to the variable, you should suspect a
storage overlay. Consider using the SAS/C debugger MONITOR
command to investigate storage overlays. Note that the MONITOR
command will identify storage overlays that occur in a language other
than C, although, of course, the offending source line cannot be
identified. Also, MONITOR can be used to monitor a storage area
belonging to another language, provided you know its address.

Incorrect File Output

If you are using the same file in more than one language and the file
output is garbled or lost, make sure the file is never open in two
languages at the same time. Except for files allocated to the terminal,
the 370 operating systems do not support output file sharing. This
includes the case where a single program shares a file with itself by

132 Chapter 9

FORTRAN Tips

accessing the file through several paths, such as from both C and
PL/I.

If you must share a file between languages, be sure to close the file
in one language before opening it in another. Because of the overhead
of repeated opens and closes, you may prefer to use different output
files from different languages and combine them later using a utility
or another program.

Miscellaneous Tips

The following sections may help you write more correct multilanguage
programs and debug them more easily. The list below offers some
general tips; the sections that follow are specific to one language (such
as FORTRAN or PL/I).

0 Use the C run-time option =multitask during program
development and debugging to lessen interference between
frameworks. Note that when you use the Pascal/VS debugger, you
must use the =multitask option.

o Do not use the C quiet function to suppress C diagnostics.

O Use the =btrace run-time option to generate a traceback with any
C diagnostic message.

O Use the STORAGE debugger command to check for storage
overlays.

0 When running under TSO, make sure your profile specifies
WTPMSG.

o0 Avoid the use of complicated signal handling and non-linear flows
of control (such as 1ongjmp), if possible.

0 Make shared variables of a simple type, if possible. You should
prefer sharing arrays to sharing structures, and function pointers
should be shared only if necessary. (This advice follows from the
fact that complicated types such as structures and function pointers
are highly language-dependent in implementation and might not be
easily shared. For instance, sharing a structure with PL/I may
require you to build your own structure descriptors. Also, the
differing structure alignment rules between languages can cause
problems.)

o If you are sharing external variables, be sure to use the C compiler
option NORENT or declare the variables const in C.

0 Remember that strings passed to C from another language are
rarely null-terminated.

O Remember that C character literals (such as 'C') are passed to
other languages as fullword integers rather than as strings.

O Always write a message out before calling exit or otherwise
terminating the program, at least during development. This makes it
easier to locate unexpected-termination errors.

O Remember to declare arguments to C functions explicitly. If no
declaration is present, FORTRAN chooses a data type using normal
FORTRAN rules, which may not be appropriate. For instance, if
you neglect to declare a variable named TOKEN, which is intended
to be the C framework token stored by CFMWK, it is assumed to be a
REAL*4 variable rather than the correct INTEGER*4.

0 Constants have data types in FORTRAN. When you pass a constant
to C, be sure it has the correct type. Pass 1 for an int *

COBOL Tips

PL/1 Tips

O

m]

Debugging Multilanguage Programs 133

argument, 1.0 for a float * argument, and 1.0DO for a

double * argument.

Always use the _STRING data type conversion macro when passing
any string argument other than a literal or string structure to
FORTRAN.

Remember that FORTRAN and C use different conventions for
accessing array elements.

If you use the C exit function, include the header file
<stdlib.h> or <fortmath.h> because, otherwise, the
FORTRAN EXIT function will be called instead, with unpredictable
results.

Distinguish carefully between COBOL DISPLAY items and COBOL
COMPUTATIONAL items. The former should be processed in C as
an array of char, the latter as an approriate variety of numeric
data, for instance, double for COMP-2.

Use the C _noalignmem modifier or the COBOL
SYNCHRONIZED keyword to ensure identical mapping of records
in COBOL and C.

Be sure to use a set of COBOL compiler options compatible with
those used by the SAS/C library (as described in Chapter 5,
“Communication with COBOL”). Using other options may cause
ABEND and/or incorrect results that are very difficult to diagnose.

Remember that almost all C functions should be declared in PL/I as
OPTIONS(ASM, INTER). (See Chapter 6, “Communication with
PL/1,” for details and exceptions.) This includes the library
functions CFMWK, DCFMWK, QCFMWK, and ACFMWK.

Remember to declare arguments to € functions explicitly. If no
declaration is present, PL/I chooses a data type using normal PL/I
rules, which may not be appropriate. For instance, if you neglect to
declare a variable named TOKEN, which is intended to be the C
framework token stored by CFMWK, it is assumed to be a FLOAT(6)
variable rather than the correct FIXED BIN(31).

Note that a PL/I FIXED BIN variable is, by default, FIXED BIN(15),
which corresponds to a C short int, not to an int.

Constants have data types in PL/I. When you pass a constant to C,
be sure it has the correct type. Pass 1.0EQ for a float *
argument and 1.0000000EO for a double * argument. Note that
1, 1.0, and 1.00000000 are all FIXED DECIMAL constants and
should not be passed to a C function unless the C function expects a
packed decimal value of the same precision and scaling.

Similar surprises can occur when you pass expressions from PL/I
to C. For instance, if I is a FIXED BIN(15) variable, the type of 1/2
is FIXED BIN(31,16), a type for which there is no C equivalent.

In general, when you call C from PL/I, you should either

O pass only variables, never constants or expressions

O declare the types of all arguments for each C function, in which
case the PL/I compiler will convert constants and expressions to
the correct type.

O Be sure to note whether string variables shared with PL/I are fixed-

length or varying-length, as the corresponding C data types are
different.

134 Chapter 9

Pascal Tips

[m]

O

When you pass a C pointer to PL/I, you must use the & or &
operator to pass the pointer’s address. If the pointer is passed
directly, the pointer’s value is interpreted by PL/I as the pointer
address.

Under OS, PL/I and C both use the DDname SYSPRINT for
standard output. If SYSPRINT is not a terminal file, this can lead to
lost output or ABENDs in either language. You can avoid this
problem by opening SYSPRINT in PL/I using the TITLE option, or
by using the _stdonm external variable to specify a different
stdout filename to C.

Be very careful with PL/I ON-units to avoid executing a GOTO
statement that terminates a called C function.

Always use the CLINK preprocessor when you link a program
containing both PL/I and C. This keeps the pseudoregisters for the
two languages separate and prevents a PL/I “too many
pseudoregisters” error.

If you use the PL/I Checkout Compiler with C, use the Checkout
Compiler SIZE option to leave enough memory free for the use of
the C library and debugger.

Because Pascal can use either call by value or call by reference, be
sure that C arguments correspond to the technique being used. For
instance, the C argument corresponding to a Pascal REAL should be
declared double if the argument is passed by value, or double *
if passed by CONST or VAR. (Note, however, that some kinds of
data, such as strings and records, are passed by reference even if
the program requests pass by value.)

Note whether string variables shared with Pascal are fixed-length
(ARRAY OF CHAR) or varying-length (STRING(n) or CONST
STRING), because the corresponding C data types are different.
When you pass a C pointer to Pascal and the Pascal routine expects
pass by CONST or pass by VAR, you must use the & or @ operator
to pass the pointer’s address. If the pointer is passed directly, the
pointer’s value is interpreted by Pascal as the pointer address.

The use of the C compiler option VString is strongly
recommended for programs that communicate with Pascal.

Make sure that structures are aligned identically in both languages.
If you use PACKED RECORD:s in Pascal, use the __noalignmem
keyword or the SAS/C compiler option BYtealign to suppress
alignment of the corresponding C structure.

In OS batch processing, Pascal uses the DDname SYSPRINT for
diagnostic output, while C may use it for standard output. This can
lead to lost output or ABENDs in either language. You can avoid
this problem by using the ERRFILE run-time option in Pascal to
cause Pascal to use another DDname, or by using the _stdonm
external variable to specify a different stdout filename to C.

135

Advanced Topics

135 Introduction
135 Dynamic Loading in a Multilanguage Program

: 136 Dynamic Loading with FORTRAN
136 MVS/XA Addressing Mode Considerations
137 Reentrancy
137 Multilanguage Signal/Condition Handling
137 Coprocesses in a Multilanguage Program
138 Using More Than Two Languages

139 Running Several Multilanguage Programs Simultaneously

Introduction

This chapter discusses the use of unusual features of SAS/C software,
or of other languages, in a multilanguage program. Most
multilanguage programs do not require the use of these features.
Topics discussed include

O dynamic loading

O addressing mode considerations

O reentrancy

O signal/condition handling

O coprocesses

O using more than two languages

O running several multilanguage programs simultaneously.

Dynamic Loading in a Multilanguage
Program

Dynamic loading is a feature supported by three languages, SAS/C, VS
COBOL, and PL/I. Because each language implements dynamic loading
differently, you must be careful to use dynamic loading in a manner
appropriate both to the language doing the load and to the language in
which the loaded module is written.

As a general rule, limit all use of dynamic loading in a
multilanguage program to one of the following situations:

O A routine dynamically loads a load module that is written entirely
in the same language as the loading routine. For instance, a PL/I
routine (possibly called from C) uses the FETCH statement to load a
load module that contains only PL/I code.

O A routine written in language X loads a load module containing
routines in several languages, and the language of the entry point is
language X. The frameworks for the other languages in the load
module have not yet been created. They will be created by a call to
the appropriate SAS/C library routine in the loaded module. Such
frameworks must be destroyed before the load module is unloaded.

136 Chapter 10

Dynamic Loading
with FORTRAN

For instance, a C function calls 1oadm to load a load module
containing both C and COBOL code. The load module entry point is
dynamn, written in C. The loaded module calls mk fmwk to create
the COBOL framework and calls d1fmwk to delete the COBOL
framework before the load module is unloaded.

Other uses of dynamic loading are unlikely to work successfully,
due to the different implementations of the various languages. For
instance, it seems plausible to develop a program structure in which C
calls a PL/I routine that uses the FETCH statement to load a load
module containing C functions. However, the C functions will be
unable to execute successfully because the PL/I FETCH statement will
not create a C PRV (pseudoregister vector) for the C module. This in
turn causes C library failures and incorrect access to extern
variables if the RENT compiler option had been in use.

Also note that calls to mkfmwk for the same language (or calls to
CFMWK) in several load modules lead to unpredictable errors.

One profitable use for dynamic loading in a multilanguage situation is
to circumvent the IBM restriction that prevents the FORTRAN
framework from being created more than once. This restriction
applies on a load module basis. That is, when the FORTRAN
framework is created, the load module that created it is modified so
that a later attempt to create the framework will fail. Because the
failure is caused by modification of the load module that created the
framework, if this load module is unloaded and reloaded, the
framework can be created again.

Note that when you use this technique, all the FORTRAN routines,
as well as the calls to mkfmwk and d1fmwk, must be in this same
dynamically loaded module.

MVS/XA Addressing Mode Considerations

When a new framework is created by mk fmwk or CFMWK, the new
framework begins execution in the same addressing mode as the
current addressing mode of the calling program. Because C does not
support changing addressing mode during execution, if C
communicates with any language that does not support 31-bit
addressing (such as Pascal/VS), the C code must also execute with
AMODE=24.

PL/I and COBOL, unlike C, allow some parts of a program to
execute in 24-bit addressing mode, and some in 31-bit addressing
mode. Use of interlanguage communication with C does not affect this
ability, but all the C code must still execute in the addressing mode
established by the first C load module. If C executes with
AMODE=24, you must be sure that all data passed from another
language to C resides below the 16-megabyte line because, otherwise,
C is unable to access it.

Advanced Topics 137

Reentrancy

Multilanguage programs can be reentrant if both languages support
reentrancy and if any restrictions on reentrant usage are observed.
Note that in a reentrant program you cannot share data via external
variables unless the data is never modified, because shared external
variables are stored within the load module.

Even though FORTRAN supports partially reentrant programs by
providing a tool to separate a FORTRAN program into reentrant and
non-reentrant portions, this does not allow you to create reentrant
FORTRAN-C mixtures. When you mix FORTRAN and another
language and use the separation tool, all non-FORTRAN code is placed
in the non-reentrant module, even if some or all of this code is
reentrant.

Multilanguage Signal/Condition Handling

Most languages provide facilities that allow the program to gracefully
handle computational errors, such as division by zero. Sometimes, as
with the C signal facility, the program can also handle
asynchronous events, such as use of the terminal attention key. Error
handling in a multilanguage program is discussed in detail in Error
Handling in Chapter 2, “Multilanguage Framework Management.”

When you use the C signal function to trap an asynchronous
event, such as terminal attention or an IUCV interrupt, the signal
handler can only be called when the C framework is active. If a
routine in another language is running when the interrupt occurs, the
interrupt is kept pending until C is reactivated by a call from or
return by the other language. Programs that require a quick response
to such signals should avoid heavy use of routines in other languages.

Implementation of asynchronous event handling in other languages
should be used with caution. Because such features can be
implemented in diverse ways, it is impossible to generalize about the
handling of an interrupt that occurs while a C function is running.
The interrupt may be left pending until the other language resumes,
or it may be handled immediately. In the latter case, whether or not
the results will be incorrect because the C code was interrupted
depends on the implementation.

When a PL/I ATTENTION ON-unit is used to handle terminal
attention interrupts, the interrupt remains pending until the PL/I
framework is active.

You should avoid using features in more than one language for
handling the same asynchronous event. For instance, you should not
define a SIGINT handler in C and an ATTENTION ON-unit in PL/I.
When an interrupt occurs, it is unpredictable which language will
process the interrupt and when the processing will take place.

Coprocesses in a Multilanguage Program

A SAS/C program that uses ILC can, like a normal C program, be
composed of several coprocesses. However, only a single coprocess
can create or destroy frameworks, or communicate with other
languages. This requirement is imposed because other languages do
not support the non-hierarchical transfers of control permitted by the
use of coprocesses. When the C framework is created by another

138 Chapter 10

language, through use of CFMWK, this limits all use of interlanguage
communication to the main coprocess.

Use of interlanguage communication in a coprocessing program has
one significant difference from normal use. In a normal multilanguage
application, if a framework created by C terminates unexpectedly, C
execution is terminated as well. If a framework created by a C
coprocess other than the main coprocess terminates, only the creating
coprocess is terminated, that is, all other coprocesses continue
execution. This feature provides a way for a C program to continue to
execute in the unusual cases where this is desirable, after unexpected
termination of another framework.

Using More Than Two Languages

Even though most multilanguage applications use only two languages,
it is possible to use more than two if necessary. This complicates the
implementation and forces some additional restrictions, but
conceptually it is not much more difficult than using two languages.
Some of the important considerations are as follows:

0 When more than two languages are used, the language frameworks
must be terminated in the opposite order of their creation. This is
required because the system calls used for error handling are
stacked by the operating system, and termination of frameworks in
the wrong order results in an incorrect error-handling
environment. Of course, out-of-order termination is unavoidable if a
framework terminates unexpectedly. In this case, after all
frameworks have terminated, all error handling should have been
successfully cancelled, although there is a period of time in which
the environment is unstable. Unpleasant failures in this sort of
situation cannot be completely avoided, but in this case the library
puts out a worst-case message, warning of the possibility of failure.

0 When only a single non-C language is active and a C function is
called from the other language, the INDep interface routine
L$UPREP can access a language-dependent location (such as the
user word of the PL/I TCA) to locate the C framework. When C is
called from another language and more than two languages are
active, LSUPREP cannot immediately determine which language it
was called by and, therefore, cannot access the other language’s
control blocks. In this case, LFUPREP must issue an expensive
system call to locate the C framework. This makes language
transitions more expensive when three languages are in use than
when only two are in use.

0 Some other languages, such as PL/I, support their own forms of
interlanguage communication. There is no reason that you cannot
use another language’s interlanguage communication and C
interlanguage communication in the same application. However,
you must avoid direct communication with the same language using
SAS/C ILC and another ILC implementation. For instance, if C calls
PL/I, and PL/I calls FORTRAN, then C may not call or be called by
FORTRAN. This is because the existence of PL/I interlanguage
communication is not visible to C, and C will treat a call to C from
FORTRAN as a call from PL/I, which will prove very unpleasant.

Running Several
Multilanguage
Programs
Simuitaneously

Advanced Topics 139

In general, there is no problem running more than one multilanguage
program at a time, as long as the other languages allow it. For
instance, one multilanguage program could invoke another using the C
system function, or two multilanguage programs could run under
ISPF in split-screen mode. When these programs use more than two
languages, however, the program must make additional calls to the C
library to allow it to successfully manage the various frameworks.

As noted above, with a three-language application, the C library
uses operating system facilities to keep track of the various
frameworks and which ones are active. Under OS, each task is
managed independently, so there are no special requirements if the
programs run under different TCBs. However, under CMS or MVS,
when only a single TCB is in use, the following situation can arise.

Suppose a three-language program is active, and that it causes
another three-language program to be activated. (For instance, it may
issue SVC 202 under CMS or use the ISPF SELECT service under
MVS.) When the new program asks the operating system for the
location of the current C framework, the framework for the previous
application may be found, rather than the one for the new application.
This will probably cause memory overlays of the previous framework.

To allow this problem to be bypassed, the C library provides the
routines QCFMWK and ACFMWK. QCFMWK quiesces the C framework,
that is, it notifies the operating system that a C framework is
becoming inactive. Similarly, ACFMWK activates a C framework by
informing the operating system that the framework is resuming
execution. A three-language program that might allow another three-
language program to receive control must call QCFMWK before
permitting a change of this sort, and call ACFMWK afterwards. (These
routines are described in detail in Chapter 11, “ILC Framework
Manipulation Routines.”)

Note that such changes can be indirect results of program action.
Under CMS, an ISPF application that invokes the ISPF DISPLAY
service and has not inhibited split screen mode allows a switch to
another application running on the other half of the screen. Such
programs need to call QCFMWK before the ISPF call, and ACFMWK
afterwards.

Note that use of these routines is only necessary when more than
two languages are in use. (However, their use causes no harm in the
two-language case.)

140

141

ILC Framework
Manipulation Routines

141 Introduction

Iintroduction

This chapter describes the execution framework manipulation routines
provided with the SAS/C ILC feature. Each routine is listed with a
synopsis, description, return value discussion, cautions,
implementation process, portability considerations, and an example.

The four standard routines are described first; the last two routines
are for use with advanced applications that use three or more
languages.

If you are using or implementing a user-supported language (a
language other than FORTRAN, COBOL, PL/I, or Pascal), you should
consult Chapters 14 through 16 for additional information on the use
of these routines.

142 Chapter 11

mkfmwk Create the Framework for a Non-C Language

SYNOPSIS

#¢include <ilc.h>
void *mkfmwk(char *lang, char *options);

DESCRIPTION
The mk fmwk function is called from C to create the
framework for another high-level language. The first
argument to mk fmwk is a null-terminated string giving the
generic name of the language whose framework is to be
created (one of “FORTRAN”, “COBOL”, “PLI”, or
“PASCAL”). The language name may be specified in either
upper- or lowercase.

The options argument to mkfmwk is a null-terminated
string containing run-time options for the other language. The
format of the string depends on the conventions used by the
other language; it will not be translated to uppercase or
modified in any other way by the library.

You can call mkfmwk even if the framework for the other
language might have already been created. (This situation
could arise when several modules are combined, each of
which calls routines in another language.) However, d1fmwk
must be called the same number of times as mkfmwk is called
before the framework can be deleted.

RETURN VALUE
Normally, mk fmwk returns a “token” identifying the
framework. This token must be passed to d1fmwk to delete
the new framework. If an error occurs that prevents the
framework from being created, a NULL pointer is returned.

See Chapter 14, “Using ILC with a User-Supported

Language,” for additional information on the use of language
tokens in a user-language context.

CAUTIONS
Run-time options for VS COBOL II will be ignored, due to
limitations of this version of COBOL.

IMPLEMENTATION
mk fmwk calls a SAS/C library-supplied main routine in the
other language to cause the framework to be created. (In
PL/1, for example, this routine is declared as an
OPTIONS(MAIN) procedure.) For this reason, you cannot
include your own main routine in a language whose
framework is to be created by mk fmwk.

PORTABILITY
mkfmwk is not portable.

ILC Framework Manipulation Routines 143
mkfmwk Create the Framework for a Non-C Language
(continued)

EXAMPLE

#include <ilc.h>

/* Create the PL/I framework, requesting the
use of the PL/I Version 2 debugger */

void *pli_token;

pli_token = mkfmwk("PLI", "TEST(ALL,*,;)");
if (!pli_token) abort();

/* call PL/I procedures */

dlfmwk(pli_token);

SEE ALSO
dlfmwk, CFMWK, DCFMWK

144 Chapter 11

difmwk Delete the Framework for a Non-C Language

SYNOPSIS

#include <ilc.h>

int dlfmwk(void *token);

DESCRIPTION
The d1fmwk function is called from C to delete a non-C
framework created by mk fmwk. The argument is the token
returned by mk fmwk when the framework was created. If
any routines in the language have been called and have not
yet returned, the framework will not be deleted, and an error
code is returned to the caller.

RETURN VALUE
The return value from d1fmwk is O if the argument token
was valid and it was possible to delete the framework.
Otherwise, a nonzero value is returned.

CAUTIONS
If mk£mwk has been called several times for a language, you
must call d1fmwk once with each returned token before the
framework is actually deleted.

Note that due to limitations of IBM FORTRAN
implementations, it is not possible to create the FORTRAN
framework a second time after it has been deleted. A method
for working around this problem using SAS/C dynamic
loading is described in Chapter 10, “Advanced Topics.”

PORTABILITY
dlfmwk is not portable.
EXAMPLE
Use of d1fmwk is illustrated in the example for mk fmwk.

SEE ALSO
mk fmwk, CFMWK, DCFMWK

ILC Framework Manipulation Routines 145

CFMWK Create the C Framework

SYNOPSIS

void CFMWK(char *language, char *options, int ILC_flags, int token);

/* CFMWK is never called from C */
/* Below are the data types corresponding to each language for */
/* each argument: */
/* language: CHARACTER in FORTRAN */
/% PICTURE X(n) in COBOL */
/% CHAR(*) in PL/I */
/% STRING in Pascal */
/* options: same data type as language */
/* ILC_flags: INTEGER in FORTRAN */
/% PICTURE 9(9) COMPUTATIONAL */
/* in COBOL */
/% FIXED BINARY(31) in PL/I */
/% INTEGER in Pascal */
/* token: same data type as ILC_flags */
DESCRIPTION

The CFMWK routine is called from a language other than C to
create the C framework. CFMWK must be called using
standard linkage, with register 1 addressing a standard call-
by-reference parameter list.

The language argument is a fixed-length character string
specifying the generic name of the language calling CFMWK,
terminated with a period. Valid values are “FORTRAN.”,
“COBOL.”, “PLL.”, and “PASCAL.”. If the 1anguage
argument is not correct, the results are unpredictable.

The language argument may also be passed as a varying-
length character string with the string length contained in the
first two bytes. This is the format of Pascal strings and
PL/I CHAR VARYING variables. The string length must be
less than 256 in this case, and the terminating period must
still be present.

The options argument is a string containing C run-time
options, followed by a period. If no run-time options are
needed, a string containing only a period should be passed.
The options should each be preceded by an equal sign and
separated by spaces, exactly as if they were specified on a C
command line. Any tokens in the string that are not
recognized as C run-time options are ignored. Note that run-
time options that affect the operation of interlanguage
communication, as described below, must be specified using
the ILC_flags argument rather than the options
argument.

The ILC_flags argument is used to specify C run-time
options that affect the operation of interlanguage
communication. They are passed separately from the normal
C run-time options because they must be processed before the
C framework can be created. The argument value is treated
as a bit string, with each bit representing a particular option.

146 Chapter 11

CFMWK

(continued)

Create the C Framework

The bits are defined as follows:

4 -- =nohtsig (suppress library ABEND handling)
2 -- =nohcsig (suppress library program check handling)
1 -— =multitask (use multitasking framework control)

For instance, an ILC_flags value of 3 requests that
library program check handling be suppressed and
multitasking be used, but that library ABEND handling
should not be suppressed. If the corresponding run-time
options are specified in the options argument, it is not
considered an error, but the options may have little or no
effect. See Chapter 2, “Multilanguage Framework
Management,” for more information on the effects of these
options.

The token argument specifies a fullword integer variable.
CFMWK stores a “token” representing the C framework in this
variable. (This token can later be passed to DCFMWK to
request that the C framework be deleted.) If the C framework
cannot be created, a token of 0 is stored. Note that call by
reference must be used for the call, and a FORTRAN or PL/I
dummy argument must not be created, in order for the
return token to be stored correctly.

You can call CFMWK even if the C framework has
previously been created. (This situation could arise when
several modules are combined, each of which calls routines
in C.) However, DCFMWK must be called the same number of
times as CFMWK is called before the C framework can be
deleted.

RETURN VALUE

CFMWK does not have a return value because it may be called
from languages such as COBOL that do not support return
values.

CAUTIONS

In PL/1, CFMWK must be declared as OPTIONS(ASM).

In Pascal, all arguments to CFMWK must be declared as
VAR or CONST. The token argument must be declared VAR
because it is modified by CFMWK.

IMPLEMENTATION

CFMWK creates the C framework calling LSCICMN, a main
function included in the C library. For this reason, it is not
possible for a program that uses CFMWK to create the C
framework also to have a user main function in C.

PORTABILITY

CFMWK is not portable.

EXAMPLES

The following examples show, for each supported language,
calls to CFMWK and DCFMWK to create and destroy the C
framework. Unimportant code (such as COBOL
IDENTIFICATION DIVISION statements) has been omitted.

ILC Framework Manipulation Routines 147

CFMWK Create the C Framework
(continued)

FORTRAN

PROGRAM CEXAM
INTEGER*4 TOKEN, ERR

c
c CREATE C FRAMEWORK AND USE THE C DEBUGGER
c
CALL CFMWK('FORTRAN.', '=DEBUG.', 0, TOKEN)
IF (TOKEN.EQ.0) STOP 16
CALL DCFMWK(TOKEN, ERR)
IF (ERR.NE.0) STOP 8
STOP
END
COBOL

WORKING-STORAGE SECTION.

77 C-TOKEN PIC 9(9) COMP.

77 C-OPTIONS PIC X(7) VALUE "=DEBUG.".
77 ILC-OPTIONS PIC 9(9) COMP VALUE 0.
77 COBOL-NAME PIC X(6) VALUE "COBOL.".
77 DCFMWK-ERR-FLAG PIC 9(9) COMP.

PROCEDURE DIVISION.

CREATE THE C FRAMEWORK AND USE THE C DEBUGGER

CALL "CFMWK" USING COBOL-NAME C-OPTIONS ILC-OPTIONS C-TOKEN.
IF C-TOKEN EQUAL 0
MOVE 16 TO RETURN-CODE
STOP RUN.
CALL "DCFMWK" USING C-TOKEN DCFMWK-ERR-FLAG.
IF DCFMWK-ERR-FLAG NOT EQUAL 0
MOVE 8 TO RETURN-CODE.
STOP RUN.

PL/1

DECLARE (C_TOKEN, ILC_OPTS, ERR) FIXED BINARY(31);
DECLARE (CFMWK, DCFMWK) ENTRY OPTIONS(ASM, INTER);

/% CREATE THE C FRAMEWORK AND USE THE C DEBUGGER */

ILC_OPTS = 0;

’
CALL CFMWK('PLI.', '=DEBUG.', ILC_OPTS, C_TOKEN);
IF C_TOKEN = 0 THEN DO;
CALL PLIRETC(16);
STOP;
END;

CALL DCFMWK(C_TOKEN, ERR);

148 Chapter 11

CFMWK Create the C Framework
(continued)

IF ERR -= 0 THEN CALL PLIRETC(8);
STOP;

Pascal

procedure CFMWK(const LANG : STRING;
const COPTS : STRING;
const ILCOPTS : INTEGER;
var TOKEN : INTEGER);
EXTERNAL;
procedure DCFMWK(const TOKEN : INTEGER;
var ERRFLAG : INTEGER);
EXTERNAL;

var
TOKEN : INTEGER;
ERRFLAG : INTEGER;

begin

(* Create the C framework, use *)
(* multitasking framework control. ¥)

CFMWK('PASCAL.', '.', 1, TOKEN);
if TOKEN = 0 then begin
RETCODE(16);
HALT
end;

DCFMWK (TOKEN, ERRFLAG);
if ERRFLAG <> 0 then
RETCODE(8) ;
HALT;
end.

SEE ALSO
DCFMWK, mkfmwk, d1fmwk

ILC Framework Manipulation Routines 149

DCFMWK Delete the C Framework

SYNOPSIS

void DCFMWK(int token, int err);

/* DCFMWK is never called from C */
/* Below are the corresponding types for each language for each */
/% argument: */
/* token: INTEGER in FORTRAN */
/* PICTURE 9(9) COMPUTATIONAL */
/% IN COBOL */
/% FIXED BINARY(31) in PL/I */
/* INTEGER in Pascal */
/* err: same data type as token */
DESCRIPTION

The DCFMWK routine is called from a language other than C
to delete the C framework created by CFMWK. DCFMWK must
be called using standard linkage, with register 1 addressing a
standard call-by-reference parameter list. If any routines in C
have been called and have not yet returned, the framework
will not be deleted, and an error code is stored.

The token argument is the token for the language that
was stored by CFMWK when the framework was created.

The err argument is an integer variable in which a value
can be stored that indicates the success or failure of DCFMWK.
A value of 0 indicates success, while any other value
indicates failure.

If CFMWK has been called several times, you must call
DCFMWK once with each returned token before the C
framework will actually be deleted.

RETURN VALUE ,
DCFMWK does not have a return value because it may be
called from languages such as COBOL that do not support
return values.
CAUTIONS
In PL/I, DCFMWK must be declared as OPTIONS(ASM).
In Pascal, the token argument to DCFMWK must be
declared as CONST or VAR, and the err argument must be
declared as VAR.
PORTABILITY

DCFMWK is not portable.
EXAMPLE

Use of DCFMWK is illustrated in the examples for CFMWK.
SEE ALSO

CFMWK, mkfmwk, d1fmwk

150 Chapter 11

QCFMWK Quiesce the C Framework

SYNOPSIS

#include <ilc.h> /* only when called from C */

void QCFMWK(int token, int err);

/* Below are data types and considerations for each argument:

/% token: must be 0 in C

/% INTEGER in FORTRAN

/% PICTURE 9(9) COMPUTATIONAL
/% in COBOL

/% FIXED BINARY(31) in PL/I
/% INTEGER in Pascal

/* err: pass éerr in C

/% same data type as token in

other languages

DESCRIPTION

The QCFMWK routine may be called either from C or from
another language to inform the library that the active C
framework should be quiesced because the program is about
to take some action that could cause creation or activation of
another C framework. QCFMWK must be called using standard
linkage, with register 1 addressing 2 standard call-by-
reference parameter list.

The token argument is an integer token representing the
active C framework. When QCFMWK is called from C, this
argument must be zero and must be passed by value. When
QCFMWK is called from a non-C language, the argument must
be the token returned by CFMWK when the C framework was
created. In this case, the argument must be passed by
reference.

The err argument is an integer variable in which a value
can be stored that indicates the success or failure of QCFMWK.
For a call from C, the variable’s address must be passed. For
a call from a non-C language, the argument must be passed
by reference. A value of 0 stored in err indicates success,
while any other value indicates failure.

RETURN VALUE

QCFMWK does not have a return value because it may be
called from languages such as COBOL that do not support
return values.

CAUTIONS

In Pascal, the token argument to QCFMWK must be declared
as CONST or VAR, and the err argument must be declared
as VAR.

After a call to QCFMWK, no calls to another language using
SAS/C ILC may be performed until ACFMWK is called to
reactivate the C framework.

PORTABILITY

QCFMWK is not portable.

*/
*/
*/
*/
x/
*/
x/
*/
*/

ILC Framework Manipulation Routines 151

QCFMWK Quiesce the C Framework
(continued)

USAGE NOTES
QCFMWK is normally used only in programs composed of
three or more languages, which may allow another
multilanguage program to begin or resume execution other
than by use of SAS/C library facilities. For instance, use of
ISPF display services, or of SVC 6 or SVC 202 to call
another program, could permit another C framework to
become active. Although use of QCFMWK in programs using
fewer than three languages is permitted, there is little reason
for it.

EXAMPLES
Two examples are shown below. The first example shows a C
function that uses _cms202 to invoke the EXEC command,
which might call another C program.

#include <ilc.h>
#include <svc.h>
#$include <lcstring.h>

int fmwkerr;

struct {
char cmd [8];
char name [8];
int fence [2];

} plist = |
"EXEC "

n "
1

(-1, -1}

b

char *execname;
int execret;

QCFMWK(0, &fmwkerr);

if (fmwkerr) |
printf("Unable to quiesce the C framework\n");
exit(16);

}

/* copy name of EXEC to PLIST */

memcpyp(plist.name, execname, 8, strlen(execname), ' ');
_ldregs(R1,éplist);

—cms202(); /* invoke the EXEC */

execret = _stregs(R15);

ACFMWK(0, &fmwkerr);

if (fmwkerr) | .
printf("Unable to activate the C framework\n");
exit(16);

152 Chapter 11

QCFMWK Quiesce the C Framework

(continued)

The second example shows a PL/I routine that creates a C
framework. Later, it calls an ISPF service that might invoke
another C program.

DECLARE (C_TOKEN, ILC_OPTS, ERR) FIXED BINARY(31);

DECLARE (CFMWK, DCFMWK, QCFMWK, ACFMWK) ENTRY OPTIONS(ASM,INTER);
DECLARE ISPLINK ENTRY OPTIONS(ASM, INTER, RETCODE):

DECLARE SELECT_LEN FIXED BINARY(31);

DECLARE SELECT_OPTS CHAR(*);

ILC_OPTS = 0;
CALL CFMWK('PLI.',6 '.',6 ILC_OPTS, C_TOKEN);
IF C_TOKEN = 0 THEN DO;
PUT SKIP EDIT('Unable to create the C framework')(A);
CALL PLIRETC(lG);
STOP;
END:

1

/* additional processing */

CALL QCFMWK(C_TOKEN, ERR):
IF ERR -= 0 THEN DO;
PUT SKIP EDIT('Unable to quiesce the C framework')(A);
CALL PLIRETC(16);
STOP;
END;
SELECT_OPTS = 'PANEL(ILCPNL)';
SELECT_LEN = LENGTH(SELECT_OPTS);
CALL ISPLINK('SELECT ', SELECT_LEN, SELECT_OPTS) ;
CALL ACFMWK(C_TOKEN, ERR);
IF ERR -= 0 THEN DO;
PUT SKIP EDIT('Unable to activate the C framework')(A);
CALL PLIRETC(16);
STOP;
END:

r

SEE ALSO
CFMWK, ACFMWK

ILC Framework Manipulation Routines 153

ACFMWK Activate the C Framework

SYNOPSIS

#include <ilc.h> /* only when called from C */

void ACFMWK(int token, int err);

/* Below are data types and considerations for each argument: */

/% token: must be 0 in C */
/% INTEGER in FORTRAN */
/% PICTURE 9(9) COMPUTATIONAL */
/% in COBOL */
/% FIXED BINARY(31) in PL/I */
/* INTEGER in Pascal */
/% err: pass éerr in C */
/* same data type as token in */

other languages */

DESCRIPTION

The ACFMWK routine may be called either from C or from
another language to inform the library that the C framework
should be reactivated, after it was quiesced by a call to
QCFMWK. ACFMWK must be called using standard linkage, with
register 1 addressing a standard call-by-reference parameter
list.

The token argument is an integer token representing the
active C framework. When ACFMWK is called from C, this
argument must be zero and be passed by value. When
ACFMWK is called from a non-C language, the argument must
be the token returned by CFMWK when the C framework was
created. In this case, the argument must be passed by
reference.

The err argument is an integer variable in which a value
can be stored that indicates the success or failure of ACFMWK.
For a call from C, the variable’s address must be passed. For
a call from a non-C language, the argument must be passed
by reference. A value of 0 stored in err indicates success,
while any other value indicates failure.

RETURN VALUE
QCFMWK does not have a return value because it may be
called from languages such as COBOL that do not support
return values.

CAUTIONS
In Pascal, the token argument to ACFMWK must be declared
as CONST or VAR, and the err argument must be declared
as VAR.

PORTABILITY
ACFMWK is not portable.

154 Chapter 11

ACFMWK Activate the C Framework
(continued)

EXAMPLES
Use of ACFMWK is illustrated in the examples for QCFMWK.

SEE ALSO
CFMWK, ACFMWK

155

Using Packed Decimal
Datain C

155 Introduction

Introduction

A data format used by COBOL and PL/I that is not directly supported
by C is packed decimal. This is the format of COMP-3 data in COBOL,
or FIXED DECIMAL data in PL/I. One way of handling such data in C
is through use of the SAS/C in-line machine code interface, which
allows you to issue packed decimal instructions directly. However,

this is cumbersome and requires knowledge of the packed decimal
hardware facilities. As an alternative, the header file <packed.h>
defines two macros, pdval and pdset, for converting packed
decimal data to and from double, which can be easily processed in
C. This chapter describes these two macros.

Even though packed decimal data is frequently treated by the
program as fractional data, it is treated by the hardware as integral.
That is, a COBOL item with PICTURE 999V99, or a PL/I FIXED
DECIMAL(5,2) variable, might be assigned the value 123.45, but the
associated storage locations would actually contain 12345. Ordinarily,
when packed decimal is converted to C double, there is no loss of
accuracy because the format of double is wide enough to hold the
largest possible packed decimal integer.

It is possible to “scale” a packed decimal value when converting to
double, for instance, converting the hardware 12345 in the example
above to a double 123.45. You should be cautious when doing this
because 123.45 cannot be expressed as an exact binary fraction and,
therefore, is subject to roundoff errors. Calculations performed using
scaled values may be inaccurate in cases where no error would have
occurred without the scaling.

The pdset and pdval macros assume that the packed decimal data
is contained in a char[n] array. When you pass a COMP-3 COBOL
item or a FIXED DECIMAL PL/I variable to C, the corresponding C
argument should be declared char (*)[n], that is, as a pointer to a
char[n] array. If the item is a structure element, it should be
declared an array, not a pointer to an array. If the source item
contains a maximum of d digits, the value of n in the declaration
should be (d+1)/2. (Each digit occupies half a byte, with an extra half
byte for a sign.)

Note that pdval and pdset may be used in any C program; they
are not limited to multilanguage applications.

156 Chapter 12

pdset Assign Double Value to Packed Decimal

SYNOPSIS
#include <packed.h>

void pdset(char (*target) [], double source,
unsigned scale, double round);

DESCRIPTION
The pdset macro is used to convert a double value to
packed decimal and store the result in a character array. The
target argument is a pointer to a character array that the
packed decimal result is to be stored in. The maximum
target size is 8 bytes (15 digits). This argument must be
defined as a pointer to a char array, not as a char *
pointer or a char array. The source argument is the
double value that is to be converted. The scale argument
specifies a scale factor. The converted source is multiplied
by pow(10.0, scale) during processing. The scale
value must be between 0 and 15. The round value specifies
a number that is to be added to the scaled source before
conversion to packed decimal. After the round amount is
added, any fractional portion is discarded.

If the source value is the result of computations with
non-integral data, a round value of zero is not
recommended, as it may cause the effect of a very small
inaccuracy to be considerably magnified. For instance, a
computed value of 1.1699998 will be stored as 116 (rather
than 117), with a scale value of 2 and a round of 0.0.

If the converted value is too large to store in the target
field, an “all nines” result of the appropriate number of digits
and sign is stored. For example, if the value should be
negative and have six digits, but was too large, the result
would be —999999.

RETURN VALUE
None.

PORTABILITY
pdset is not portable.

EXAMPLE
Take three percent of a packed decimal value in a structure
passed from COBOL, storing the result in another structure
item. Even though the input data is defined in COBOL as
having two decimal places, it is processed by C without
scaling, to avoid roundoff error.

#include <packed.h>

struct pddata {
char income [6];
char outgo [6];

Using Packed Decimal Data in C 157

pdset Assign Double Value to Packed Decimal
(continued)

/* Expected COBOL data declarations:
INCOME PIC 9(9)V99 COMP-3.
OUTGO PIC 9(9)V99 COMP-3. */
b

void percent3(struct pddata *data)
{

double cents;

cents = pdval(édata->income, 0);

cents * = 0.03; /* compute 3 percent */
/* store in record after rounding */
pdset(édata->outgo, cents, 0, 0.5);
return;

SEE ALSO
pdval

158 Chapter 12

pdval Convert Packed Decimal to Double

SYNOPSIS

#$include <packed.h>
double pdval(char (*source) [], unsigned scale);

DESCRIPTION
The pdval macro is called to convert a packed decimal value
(stored in a character array) to double. The source
argument should be the address of the array containing the
packed decimal data. The maximum source size is 8 bytes (15
digits). Note that this argument must be a pointer to a char
array, not a char * pointer or a char array. The scale
argument specifies a scale factor. The converted source is
multiplied by pow(10.0, -scale) during processing. The
scale value must be between 0 and 15.

RETURN VALUE
The return value is the value contained in the source
argument, appropriately scaled. If the scale value is invalid,
the constant HUGE_VAL is returned.

ERRORS
If the source array does not contain valid packed decimal
data, an 0C7 ABEND results.

PORTABILITY
pdval is not portable.

EXAMPLE

Print the value of a packed decimal value passed from
COBOL.

#include <packed.h>
void printamt(char (*amount) [6])
/* Expected COBOL data declaration:
AMOUNT PIC 9(9)V99 COMP-3. */

double dollars;

dollars = pdval(amount, 2); /* convert to dollars & cents */
printf("Amount is § % 12.2f\n", dollars);
return;

SEE ALSO
pdset

159

C Varying-Length String
Macros

159 Introduction
159 Varying-Length String Macro Descriptions
160 Examples Using Varying-Length String Macros

Introduction

C functions that are called from PL/I or Pascal may frequently be
required to process character strings that are preceded by a short
length field. The header file <vstring.h> defines a number of
useful macros for programs that need to process this kind of data.

As a debugging aid, the printf format %V is also provided. This
format behaves the same as the %s format, but it expects the
corresponding argument to be a pointer to a PL/I or Pascal format
varying-length character string.

Varying-Length String Macro Descriptions

The macros defined by <vstring.n> are as follows:

VSTRING(max) generates a structure type designator for a
varying-length character string whose
maximum length is max.

vstrlen(vstr) returns the current length of the varying-length
character string vstr.

vstrmax(vstr) returns the maximum length of the varying-
length character string vstr.

vstrinit(cons) generates an initializer for a varying-length
character string, where cons is a string literal
that is to provide the initial value.

vstrepy(vstr, str)
copies a null-terminated string str to a
varying-length string vstr. No check is made
to avoid copying too much data. It returns the
value of its first argument.

strvepy(str, vstr)
copies a variable-length string vstr to a C
character array str and adds a terminating
null character. No check is made to avoid
copying too much data. It returns the value of
its first argument.

160 Chapter 13

Examples Using Varying-Length String
Macros

Some examples of varying-length string macros in a function that
might be called from PL/I are given below:

#include <vstring.h>
#include <string.h>

typedef VSTRING(20) vstr20;
typedef VSTRING(40) vstrio;
extern char suffix [21];

void example(vstr20 *instr, vstr40 *outstr)

{
char cbuf [41];

printf("String length = %d, data = %V\n",
vstrlen(*instr), instr);

strvepy(cbuf, *instr); /* concatenate instr */

strcat(cbuf, suffix); /* and suffix */

vstrcpy(*outstr, cbuf); /* into outstr */

return;

Chapters

161

Part 2
Extending
SAS/C ILC

14 Using ILC with a User-Supported Language
15 User-Supported Language Implementation Background
16 Implementing ILC with a User-Supported Language

This part describes how to use the SAS/C ILC feature to communicate
with less widely used languages such as Ada or SNOBOL. SAS/C ILC
does not support these languages directly; however, it permits support
for such languages to be added by a knowledgable user.

Note that this facility has two audiences. One audience is the user
of an interface to a user-supported language. This audience need only
read Chapter 14. The knowledge required to use the interface to a
user-supported language is considerably less than the knowledge
required to implement it. Unless stated otherwise in your interface
documentation (supplied by the implementor), knowledge of the
internals of C, or of the target language, should not be required.

The other audience is the implementor of the interface to a user-
supported language. Before attempting to extend ILC in this fashion,
you must have an expert knowledge of your language and its
implementation. You must also be familiar with SAS/C and assembler
language.

It is very important that both users and implementors be well-
versed in the material in Part 1 of this book before reading Part 2.

162

163

Using ILC with a User-
Supported Language

163 Introduction
163 Language Names
164 Creating and Deleting the User-Supported Language Framework
164 Creating and Deleting the C Framework
165 Calling C from a User-Supported Language
165 Calling a User-Supported Language from C
166 Passing a Language Token to a __foreign Routine
166 Using ILCLINK with a User-Supported Language

Iintroduction

This chapter provides a general set of directions for using a user-
supported interface to a non-standard language. It must be augmented
by the documentation supplied by the implementor of the interface to
your language. Implementors will find this chapter helpful in
determining what to include in this documentation.

Before reading this chapter you should be familiar with C, your
language, and the documentation produced by the implementor of the
interface. Knowing one of the standard languages (FORTRAN, COBOL,
PL/I, or Pascal) is also helpful. This allows you to use examples in
that language as models for your language, at least in any areas where
the two languages are similar. Be sure to read Chapters 1 through 3,
8, 9, and at least one of Chapters 4 through 7 before reading this
chapter.

Because SAS/C ILC puts no restrictions on the syntax or semantics
of a user-supported language, it is impossible to give useful examples
in this chapter. Refer to your interface documentation for such
examples.

Language Names

Each user-supported language has two names, assigned by the
interface implementor, a framework name and an ILCLINK name. The
framework name is the name specified by the first argument in calls
to the framework routines mk fmwk and CFMWK. Usually, this name is
the standard language name, for example, “ADA” or “MODULA2.”
(A name longer than eight characters must be abbreviated.)

The ILCLINK name is used in ILCLINK control statements. This
ILCLINK name may differ from the framework name for one of two
reasons. First, only the first three characters of this name are
significant, so the name might have to be abbreviated to assure
uniqueness. For instance, “LISP” and “LISA” might have to be
contracted to “LSP” and “LSA,” respectively. Second, if different
versions of the same language have different linking requirements,
there might be more than one ILCLINK name for the same framework
name. For instance, if two versions of Ada are in use, they might be
assigned ILCLINK names of “AD1” and “AD2,” even though the
framework name for both is “ADA.” Your ILC interface
documentation should include the exact names assigned to your
language.

164 Chapter 14

Creating and Deleting the User-Supported
Language Framework

Just as with a standard language, you must create the framework for a
user-supported language before calling a routine in that language. You
must also delete the framework after all calls to the language have
completed.

To create a user-supported language framework from a C function,
call the mkfmwk function. The first argument to mk fmwk must be the
language’s framework name. You can pass run-time options to the
other language if it supports them. (See your interface documentation
for any applicable restrictions.) The token returned by mk fmwk is
later passed to d1fmwk when you delete the framework. You may also
need to use this token when you call a routine in the other language
from C, as described in Passing a Language Token to a ___foreign
Routine later in this chapter.

Except for the differences mentioned above, the descriptions of
mkfmwk and d1fmwk in Chapter 11, “ILC Framework Manipulation
Routines,” are completely applicable to user-supported languages.

Creating and Deleting the C Framework

Just as with a standard language, when you call C functions from a
user-supported language, you must first create the C framework. You
must also delete the C framework after all calls to C functions have
completed.

To create the C framework from a routine in your language, call the
CFMWK routine. CFMWK expects to receive a call-by-reference argument
list. Your interface documentation should describe exactly how to
generate this kind of argument list in your language, as well as the
correct data type and format for each argument. The token returned
by CFMWK is later passed to DCFMWK when you delete the framework.

In general, the description of CFMWK in Chapter 11 applies to user-
supported languages as well. For instance, CFMWK always accepts four
arguments, and the same bits are are always used in the third
argument to select run-time options. However, the Chapter 11
description cannot specify the syntax of the call, or the exact data
types of the arguments. (For instance, you cannot assume that a string
literal can be passed to specify the language name.) Supplying this
kind of information is the responsibility of your interface
implementor.

CFMWK considerations specific to user-supported languages are as
follows:

0 The first argument to CFMWK must be a string containing the
framework name for the calling language, followed by a period.

O Some languages may require you to specify the =multitask
option in the third argument to CFMWK. Your interface document
should note whether this is required.

Using ILC with a User-Supported Language 165

Calling C from a User-Supported Language

There are three requirements for calling a C function from a user-
supported language after the C framework has been created:

o The C function must be compiled with the INDep compiler option.

0 The function must be called using IBM 370 standard linkage.

O An argument list must be passed in the format expected by the C
function. If the calling language supports call by reference, then
you should be able to declare each argument in the C function to be
a pointer to an appropriate kind of data. (See your interface
documentation for a list of corresponding data types for C and your
language.) If you cannot use call by reference, you must ensure that
the argument list generated by your language’s compiler and
expected by the C function are identical. Details and any applicable
restrictions should be included in your interface documentation.

Ideally, you should be able to write C functions that return a value
to a calling routine in your language. This might be limited to certain
kinds of return values, such as scalars only. Any such restrictions
should be mentioned in your interface documentation.

Calling a User-Supported Language from C

There are three requirements for calling a user-supported language

routine from C after the called language’s framework has been
created:

O The called routine must be declared in C using the keyword
__foreign, to inform the compiler that it is in a user-supported
language.

O The first argument passed from C must be the called language’s
token, as returned by mkfmwk. (In some cases, the token can be
omitted, as described below.) This token will be completely
processed by the SAS/C library, that is, it will not be present in the
argument list received by the __foreign routine.

o The remaining arguments must be of types supported by the user-
supported language interface, corresponding to the types expected
by the called routine. You may be able to use data type conversion
macros to pass arguments for which there are no corresponding C
types.

When you call a routine in a user-supported language from C, you
have more options for argument passing than you do for a call in the
other direction because the C compiler knows that the routine to be
called is in another language. Although much of the argument
processing is language-specific, the following generalizations are valid:

O Any argument to your language that is a C pointer (other than a
string literal) is passed unchanged to the called routine.

O Any argument that is not a pointer, or that is a string literal, is
passed to your language in a manner appropriate to its type, as
determined by the implementor of the interface. Passing an
argument of an unsupported type results in a warning message, and
the argument address is passed unchanged.

O Any argument that is a data type conversion macro call is passed to
your language in an appropriate way, as determined by the

166 Chapter 14

Passing a
Language Token to
a —foreign Routine

implementor of the interface. Incorrect results might be obtained if
the macro is not used properly. Depending on the language, you
might use either existing data type conversion macros, such as
—STRING, or new macros developed by the implementor of the
interface to support unique data types of your language.

More specific details on the handling of each of these cases should be
in your interface documentation.

Ideally, you should be able to call a FUNCTION in your language
that returns a value, and correctly receive the return value in C. This
might be limited to certain kinds of return values, such as scalars
only. Any such restrictions should be mentioned in your interface
documentation.

The language token passed to a __foreign routine is used by the
library to determine which language is being called because the
—foreign keyword might apply to several languages. If only one
high-level language other than C is in use, the token can be omitted.

Note: If you choose not to pass a language token to a __foreign
routine, it is possible that the first argument will be misinterpreted as
a token, with unpredictable results. This can only occur if the first
argument is a pointer whose value has the high-order bit set. Because
C pointers do not normally have this bit set, this is exceedingly
unlikely.

If your language is the main language of the program, you may
need to add a dummy call to mk fmwk for your language in your C
code, since this function is the only way to obtain a language token.
Note that such a dummy call requires a corresponding call to d1fmwk
before the C framework can be terminated.

Using ILCLINK with a User-Supported
Language

Whenever you use an ILCLINK control statement, such as the
LANGUAGE or FIRST statement, that has a language name as an
operand, you must specify the ILCLINK name of your language. Only
the first three characters of that name are significant.

ILCLINK has no specific knowledge of languages other than
FORTRAN, COBOL, PL/I, and Pascal. In particular, ILCLINK cannot
determine the proper entry point for a program whose first routine is
in a user-supported language. For this reason, you may not use a
FIRST statement with an entry point specification of *. Your interface
documentation should describe the correct entry point for a program
whose main routine is written in your language. For details on using
ILCLINK, see Chapter 8, “Linking Multilanguage Programs with the
ILCLINK Utility.”

167

User-Supported Language
Implementation
Background

167 Introduction

167 Implementation Tasks

168 Language Names and Routine Names

169 Overview of User-Language Support Routines
170 Processes and Process Communication

Iintroduction

This chapter provides an overview of the key concepts of the SAS/C
support for communication with user-supported languages. It is
divided into the following sections:

O an overview of the required tasks for adding a user-supported
language

O a discussion of language names and routine names

O an overview of the routines you will need to write in order to
support an additional language

O an overview of the processes that implement ILC, how they
communicate, and how they interact with your support routines.

Chapter 16, “Implementing ILC with a User-Supported Language,”
expands on these topics in great detail, but it is important that you
understand the fundamental concepts before moving on.

In order to extend SAS/C ILC support, you must have in-depth
knowledge of the internals of your target language and be familiar
with C and assembler language. This chapter and Chapter 16 assume
this knowledge.

Implementation Tasks

Adding support for a new language to SAS/C ILC can be divided into
three tasks:

1. You must add your language to the library’s supported language
table. The supported language table is used by the library to
record the names and attributes of all the supported languages.
Each entry in the table is identified both by the name of the
language and by a language number assigned when the table is
generated.

2. You must write a number of support routines that will be called
by SAS/C library routines to perform language-specific
processing. For instance, you must provide a routine that creates
the framework for your language.

168 Chapter 15

3. You must provide documentation for users of your language. The
importance of this step cannot be overstated. In the course of
implementing the support, you will need to make many decisions
about equivalent data types, data type conversion macros,
restrictions, and so on. Because these decisions will be made by

you, not by SAS/C ILC, they need to be documented by you as
well.

Language Names and Routine Names

When you implement support for a new language in SAS/C ILC, you
must assign three names to the language: a framework name, a generic
name, and an ILCLINK name. The first two names are referenced by
the entries in the supported language table, while the ILCLINK name
is used only by ILCLINK.

The framework name is the name for the language as passed to the
framework creation routines mk fmwk and CFMWK. This name can be
up to eight characters long. It is stored in the supported language
table to identify the table entry for the language.

The generic name for a language is used to construct ILC support
routine names. This name is limited to three characters. ILC support
routines have names of the form L$I-nam-p, where nam is the generic
language name, and p identifies the purpose of the routine. For
instance, if your language’s generic name is MLA, the name of the
routine you must write to create your framework would be LEIMLAF.
The entry for your language in the supported language table will
include external references to these routines.

The ILCLINK name for a language is used by ILCLINK to include
the support routines for that language. These names can be up to
eight characters long, but only the first three characters are
significant. These names are used to generate the names of TEXT files
under CMS, or PDS members under OS, containing the object code
for your support routines. The same naming convention is used as for
the routine names. For instance, if the ILCLINK name of your
language is ML2, the file or member name for the object code for
your Framework-routine should be L$IML2F.

If possible, the ILCLINK name and the generic name should be the
same, but this may be impossible if you must support multiple
versions of the same language. For instance, if you have different
support routines for Version 1 and Version 2 of an Ada compiler but
the differences do not affect the way your interface is used, you could
use ILCLINK names of AD1 and ADZ2 to identify the two versions.
Both the framework name and the generic name could be ADA. Note
that in this case, the routine name and the filename are different; the
object files named L$IAD1F and L$IAD2F each define a routine
whose entry point name is LSIADAF. (The library’s support for
FORTRAN, COBOL, and PL/I, each of which has two major versions,
is arranged in this way.)

Users of your support do not need to be aware of the generic
language name. They do need the framework name to call the
framework routines correctly and the ILCLINK name to code correct
ILCLINK control statements.

Table 15.1
ILC Support Routines

Implementation Background 169

Overview of User-Language Support
Routines

When you add support for a new language to ILC, you must code a
number of support routines. Table 15.1 lists the required routines.
Each routine must be in the indicated language, either assembler, C,
or your target language. Each routine has an associated single-letter
function code, which is used in forming the routine name, and has the
name of the object file or member. For instance, the code for the
Framework-routine is F; therefore, the routine’s name will be
L$InamF, where nam is the generic name for your language.

Routine Language Description
egin- assembler return control to C after

framework initialization

Comm- assembler control calls between C and
the target language

Framework- assembler create target language
framework, passing run-time
options

Locate- assembler locate target language control
blocks

Main- target language cause framework initialization

Prep- assembler intercept calls to C from the
target language

Quit- target language terminate target language
execution

Xform- C transform C argument list into

one for the target language

Under OS, the object code for these routines should be stored in the
SASC.ILCOBIJ (object module) and SASC.ILCSUB (load module) data
sets. Under CMS, you can place the object code in TEXT files on any
accessible minidisk. (Usually, you will either put them on the SAS/C
minidisk or on a minidisk associated with your target language.)

The linkage conventions and functional details of these routines are
described in detail in Chapter 16. Note that examples of these
routines for the FORTRAN language are provided in source form in
the SASC.SOURCE library under OS and in LSU MACLIB under CMS.
Macros used by the samples are in SASC.MACLIBA under OS and
LCUSER MACLIB under CMS. Because your language is probably
different from FORTRAN, you will most likely have to write new
routines rather than modify the examples. Nevertheless, they should
probably prove useful in elucidating the ways such routines can be
written.

170 Chapter 15

Figure 15.1
Process Communication

Processes and Process Communication

The best model for the SAS/C ILC support is that each language runs
as a separate process. The processes communicate by sending
messages to each other, rather than through a standard call-return
mechanism. Except during framework creation or deletion,
communication occurs between two specific routines, a C control
routine (L$CICTL) that runs as part of the C process, and your Comm-
routine (L$InamC), that runs as part of your language’s process. The
Comm-routine uses the CCOMM assembler macro to send messages to
and receive messages from the C process.

Control switches from one process to another when one process
needs to ask the other to perform a specific action. For instance, the C
process may send the non-C process a QUIT message to ask the non-C
process to terminate, or a CALL message to ask the non-C process to
call a non-C routine for C. Message transfers between processes, as
well as process creation and deletion, are handled by a library
component called the ILC framework manager.

Figure 15.1 illustrates the normal way in which the two processes
communicate. The solid arrows represent subroutine calls, while the
broken arrows represent inter-process communications.

C Process Non-C Process
C function E non- c
| routine
L$CICTL --- i -—> Comm-routine

Note that the role of LSCICTL and the Comm-routine above is to act
as “stand-ins” for code in the other language. For instance, imagine
the following calling sequence: X1 (non-C) -> Y1 (C) -> Y2 (C) ->
X2 (non-C). The actual calling sequence in the non-C process is X1-
>L$InamC->X2; the actual calling sequence in the C process is
L$CICTL->Y1->Y2->L$CICTL. The Comm-routine takes the place of
all called C functions in the non-C process, and LSCICTL takes the
place of all user-language routines in the C process.

This situation is illustrated in Figure 15.2. The numbers indicate
the order in which events occur.

Figure 15.2
Process Communication
Example

Implementation Background 171

C Process Non-C Process

L$CICTL X1

AY
\
\
\
\
\
\

#
O®

Y1

4 Comm-routine
1
1

1
1

1

|

|

|
[}
[
[
[
[
(]
[
|

|

!

i

|

[

®
Y2 X2
¥
;o
r
L$CICTL |
® |

The order of events depicted in Figure 15.2 is as follows.

1.

The non-C routine X1 calls the C function Y1. This causes
control to pass to your Comm-routine (for a detailed explanation,
see Chapter 16.)

- The Comm-routine sends a CALL request to L$CICTL, running in

the C process.

. L$CICTL calls the C function Y1.
. Y1 calls the C function, Y2.
. Y2 calls the non-C routine X2, which causes control to pass to

L$CICTL.

. L$CICTL sends a CALL request back to the non-C process.
. The Comm-routine receives the CALL request.
. The Comm-routine calls X2.

Now that you have the fundamental concepts of how SAS/C ILC
works, you are ready to move on to actually implementing support for
your language. The next chapter shows in detail how to accomplish
this task.

172

173

Implementing ILC with a
User-Supported Language

173 Introduction
174 ILC Control Flow
174 Creating the Non-C Framework
175 Creating the C Framework
176 Calls from a Non-C Routine to a C Function
177 Calls from a C Function to a Non-C Routine
178 Normal Termination of the C.Framework
179 Normal Termination of the Non-C Framework
180 Unexpected Termination of the C Framework
181 Unexpected Termination of the Non-C Framework
182 Updating the Supported Language Table
183 Implementing the Support Routines
183 Control Block Location (the Locate-routine)
184 Framework Generation (the Framework-routine)
185 The Main-routine
185 The Quit-routine
186 The Pre-Prolog (Prep) Routine
189 Argument Transformation (the Xform-routine)
200 Beginning Framework Execution (the Begin-routine)
201 Controlling Interlanguage Calls (the Comm-routine)
202 Communicating with the C Process (the Begin- and Comm-
routines)
214 Miscellaneous User-Supported Language Issues
214 Defining Equivalent Data Types
216 Data Sharing Considerations
216 Function Pointer Implementation
219 CFMWK and DCFMWK Considerations
219 Error Handling and the C Run-Time Option =multitask
220 Documenting Your Interface
220 Important Items to Document

Introduction

This chapter describes how to extend SAS/C ILC support to include
communication with additional languages. Before reading this chapter,
you should have read Chapters 1 through 3, 8, 9, 11, 14, 15, and at
least one of Chapters 4 through 7. (Chapter 4 is especially useful as
an aid to understanding the FORTRAN sample routines.) In other
words, you should be very familiar with the characteristics of SAS/C
ILC and with C in general. You also need an expert-level
understanding of your target language. If you do not have this
prerequisite knowledge, you will probably have great difficulty
understanding this chapter.

174 Chapter 16

Creating the Non-C
Framework

Figure 16.1
Non-C Process
Initialization

Before you can add support for your language to SAS/C ILC, you
will need to understand the control flow of ILC processing. Then, you
must

O update the supported language table
O implement the necessary support routines
0 document the interface.

This chapter covers all these topics in detail, and also discusses
some miscellaneous issues you will need to decide during development
of your interface.

ILC Control Flow

When a multilanguage program begins execution, only a single
process is active. If the initial language is C, a non-C process is
created when a C function calls mk fmwk, as illustrated in Figure 16.1.

C Process Non-C Process

main Framework-routine

i
|
1
]
I
I
1
!
|
I
I
1
l | l
i
i
i

Main-routine

1

1

|

i

|

1

\ 1

\

\

\

N1

|

hY

AN

|

!

1

]

i

]

]

|

mk fmwk »
\

Begin-routine

[SVIN V]

Implementing ILC 175

. A C function calls the mk fmwk function to create the non-C

framework.

. mkfmwk creates the non-C process.
. The Framework-routine is called by the ILC framework manager

to begin execution of the non-C process.

. The Framework-routine calls your Main-routine. This causes

your language’s framework to be created. The Main-routine then
calls the Begin-routine.

. The Begin-routine uses the CCOMM macro to inform mk fmwk

that the non-C framework has been established.

Creating the C When the initial language of a program is a non-C language, the effect
of calling CFMWK is very similar to the previous case. See Figure 16.2.

Framework

Figure 16.2

C Process Initialization

L$CICTL <--- - DCFMWK

C Process Non-C Process
@ _ ©)
L$CICMN ! non-C
: routine

w N

. A non-C routine calls the CFMWK routine to create the C

framework.

. CFMWK creates the C process.
. The C framework is created by a call to LSCICMN, a special C

main routine in the run-time library.

. L$CICMN calls the ILC control routine L$CICTL, which sends a

message to the non-C process to inform CFMWK that the C
framework has been successfully established.

176 Chapter 16

Calis from a Non-C
Routinetoa C
Function

Figure 16.3
Calls from a Non-C
Routine to a C Function

When a non-C routine calls a C function, the compiler-generated code
for the called function transfers control to the entry point LSUPREP.
When you use ILC, LBUPREP is an alias for the Prep-routine for the
calling language. The Prep-routine locates the C Run-time Anchor
Block (CRAB), and transfers control to the Comm-routine.

Note that your Prep-routine is used only when there are only two
languages (including C) in use. For a program using more than two
languages, a more complicated version of LSUPREP, supplied by the
library, must be used. This more complicated version performs the
same function (finding the CRAB and calling the Comm-routine) but
with more overhead. (This version of LEUPREP has to make operating
system calls to locate previously saved information about the current
framework because it cannot determine which framework is active
when it is called.)

The sequence of events for a call from a non-C routine to a C
function is shown in Figure 16.3.

\
\
\
N\
\

C ®

function

o

Comm-routine

Ve
Q®

C Process Non-C Process
i non-C @
! routine
@ @
L$CICTL ® | Prep-routine
¥

1. The non-C routine calls the C function.

2. The compiler-generated code for the C function calls LSUPREP
which is the name of the entry point to your Prep-routine. The
Prep-routine locates the CRAB and calls your Comm-routine.

3. The Comm-routine sends a CALL message to the C process to
request a call to the C function.

4. The CALL message is received by L$CICTL.

5. L$CICTL calls the C function, which executes and returns.

b

Calls fromaC
Function to a Non-C
Routine

Figure 16.4
Calls from a C Function to
a Non-C Routine

Implementing ILC 177

6. L$CICTL sends a RET message to the non-C process to inform it
that the C function has returned.

7. The Comm-routine receives the RET message.

8. The Comm-routine returns to the non-C routine, bypassing the
Prep-routine.

The flow of control when a C function calls a non-C routine is similar
to the flow when a non-C routine calls C, but it is generally necessary
to remap the argument list before the non-C routine can be called.

When the compiler processes a call to a routine declared (using the
—foreign keyword) to be in another high-level language, it
generates different code from the normal function call code. The
generated code calls LECILCL (an entry point to L§CICTL) and passes
a structured list of tokens and pointers. The information passed to
L$CILCL includes the address of the non-C routine to call, the types of
all non-pointer arguments, and the type of return value expected.
L$CILCL passes this list to your Xform-routine, which must build an
output argument list in the format expected by the non-C language
and return it to L§CILCL.

The flow of control between processes when a C function calls a
non-C routine is illustrated in Figure 16.4. Note that because L$CILCL
is an entry point to LSCICTL and most of the code is common to the
two, the name L$CICTL is used for either, except in contexts that
apply only to LSCILCL.

Xform-routine .
routine

C Process Non-C Process
C @ |
function ® E
® ®
L$CICTL @ i Comm-routine @
<=
I : I
©) E non-C ®

178 Chapter 16

w N

S O1

8.
9.

. The C function calls the non-C routine, declared in C as

__foreign. The compiler generates code to call L§CILCL.

. L$CICTL calls your Xform-routine.
. Your Xform-routine transforms the argument list built by the

compiler into an argument list in your language’s format and
returns to L§CICTL.

. L$CICTL sends a CALL message to the non-C process.
. The CALL message is received by the Comm-routine.
. The Comm-routine calls the non-C routine, which executes and

returns.

. The Comm-routine sends a RET message to the C process to

inform it that the non-C routine has returned.
L$CICTL receives the RET message.
L$CICTL returns to the calling C function.

Normal Termination Normal termination of the C framework occurs during a call to
of the C Framework DpcFMwK. The flow of control is shown in Figure 16.5.

Figure 16.5

Normal Termination of the
C Framework

C Process Non-C Process
@ | non-C ®
L$CICMN ; routine
@ | @
L$CICTL Ra e DCFMWK

[P VI G

. A non-C routine calls DCFMWK to delete the C framework.

. DCFMWK sends a QUIT message to the C process.

. L$CICTL receives the QUIT message and returns to L§CICMN.

. L§CICMN returns to the C run-time library, which deletes the C

framework. The library then returns to the ILC framework
manager, which deletes the C process.

Implementing ILC 179

Normal Termination Normal termination of the non-C framework occurs during a call to
of the Non-C di1fmwk. The flow of control is shown below in Figure 16.6.

Framework

Figure 16.6 C Process

Normal Termination of the
Non-C Framework

C
function

l

dlfmwk

Non-C Process

Framework-routine

T

Main-routine

|

Begin-routine

1. A C function calls d1fmwk to delete the non-C framework.
2. d1fmwk sends a QUIT message to the non-C process.
3. The Begin-routine receives the QUIT message and returns to the

Main-routine.

4. The Main-routine returns to the Framework-routine, causing the
non-C run-time library to delete the non-C framework.

5. The Framework-routine then returns to the ILC framework
manager, which deletes the non-C process.

180 Chapter 16

Unexpected If the C framework terminates while other language frameworks are
Termination of the active, for instance by a call to exit, the library must terminate all
C Framework the other frameworks. This is implemented as shown in Figure 16.7.

Figure 16.7 C Process Non-C Process
Unexpected Termination

of the C Framework

LSCMAIN

l

Quit-routine —_—

|
I
I
I
I
I
]
]
i
]
I
i
1
)
]
I
E
) Comm-routine
]
1
]
1
I
i
i
1
]
]
|
!
I
1
I
i
1
1

1. The C library’s initialization/termination routine, LSCMAIN,
checks during termination for any active non-C frameworks. If
one is found, it sends a QUIT message to the non-C process.

2. The Comm-routine receives the QUIT message and calls your
Quit-routine.

3. The Quit-routine uses a facility in your language to terminate
execution. (For instance, in FORTRAN a STOP statement is
used.)

4. The framework is deleted by your language’s run-time library,
after which the ILC framework manager deletes the non-C
process.

Implementing ILC 181

Unexpected If a non-C framework terminates while the C framework is still active,
Termination of the the library must terminate the C framework. This is somewhat more
Non-C Framework complicated than the previous situation because control flow for
termination of a non-C framework does not cause any SAS/C code to
be invoked, since the other language’s library is unaware of the
existence of the C framework.

In order to handle this situation, the C library obtains the address
of the save area for the routine (usually the operating system) that
called the first non-C routine. It obtains this address by calling the
Locate-routine, which loads this save area from a location defined by
the target language implementation. (For instance, in PL/I this save
area is accessed from the TESA field of the PL/I TCA, which is
addressed via register 12.)

After obtaining this save area address, the library copies the
register 14 value from the save area and replaces it with the address
of the library routine L$CIQIT. This means that, if the non-C
framework terminates unexpectedly, processing occurs as shown in
Figure 16.8.

Figure 16.8 C Process Non-C Process
Unexpected Termination

of the Non-C Framework

@ . | T@

L$CICTL <--i-- - L$CIQIT

@O

182 Chapter 16

1. After your language’s run-time library has terminated its
framework, it returns control to L$CIQIT rather than to its
caller.

. L$CIQIT sends a QUIT message to the C process.

. L§CICTL receives the QUIT message and calls the library exit
function to terminate the C framework. -

4. After the C framework has been deleted, the ILC framework
manager deletes the C process and informs L$CIQIT that the
process has terminated.

5. L$CIQIT loads the original return address into register 14.

6. L$CIQIT returns to the caller of the non-C language.

w

Note that the above technique assumes that a program in your
language is always called using 370 standard linkage, with a return
address in register 14. This must be true if programs in your language
can be called directly from the operating system, even if your
language uses non-standard linkage internally.

Some languages may not provide a way for the Locate-routine to
locate the correct save area. In this case, the Locate-routine may
return zero as the save area address. If the Locate-routine returns
zero, the C library simply will not attempt to handle unexpected
terminations of the non-C framework. In this case, a number of errors
may occur, depending on circumstances, due to the inability to delete
or clean up the C framework. For instance, memory allocations might
fail because memory used by C has not been freed.

Updating the Supported Language Table

The supported language table source is named L$IMIXD. As supplied,
it contains a call to the LANGDEF macro defining the four standard
languages:

LANGDEF (PLI,PLI,1,NO),
(FORTRAN, FOR, 2, YES) ,
(PASCAL, PAS, 3,NO),
(COBOL,COB, 4, YES)

These four operands are constant and must not be changed. To add
support for user-supported languages, you simply add an operand to
this macro call for your language, reassemble L$IMIXD, and replace
the object module. (The object module is in the SASC.ILCOBJ and
SASC.ILCSUB data sets under OS. Under CMS, the object module is
in L$IMIXD TEXT on the minidisk on which the SAS/C software has
been installed.)

Each operand of LANGDEF has the following format:

(framework-name,generic-name, language-number, ILCENTRY-used)

The operands are used as follows:

0 The framework-name operand is the language name (a maximum of
eight characters) as passed to mkfmwk or CFMWK.

0 The generic-name operand is the three-character name used to
name entry points to-the language support routines.

Control Block
Location (the
Locate-routine)

Implementing ILC 183

0 The language-number operand is a number between 5 and 255
identifying the language. This number is completely arbitrary,
except that no two languages may have the same number.

0 The ILCENTRY-used operand must be either YES or NO. This
operand indicates whether the Begin-routine and Comm-routine use
the ILCENTRY macro for storage management. See the descriptions
of these routines later in this chapter for information on
ILCENTRY.

implementing the Support Routines

This section describes implementation details for each of the support
routines outlined previously. Information on data type conversion
macros, including how to write additional ones, is presented in
conjunction with the Xform-routine. Overview information on
processing return values from routines in your language is also
presented in the Xform-routine section.

You may wish to have listings of the sample FORTRAN support
interface routines available as you read these specifications.

The Locate-routine, named L$InamL, where nam is your language’s
generic name, must be written in assembler language. It is called by
the library to obtain two addresses:

0 the address of a word in which the CRAB address can be stored.
This word is called the CRAB address word. It must contain zeroes
before the C framework has been created. Considerations for
selecting a location for this word are given in the next section.

O the address of the save area addressed by register 13 at the time
the first routine in your language was called. This area is called the
original save area. See Unexpected Termination of the Non-C
Framework earlier in this chapter for details on the use of this
information. Note that you can return a zero save area address if
the original save area cannot be located.

When the Locate-routine is called, register 1 addresses an 8-byte
area in which return information can be stored. Registers 2 through
13 contain the same values they would if the Locate-routine had been
called directly by a caller in your language. The values in these
registers may be useful in locating framework control blocks for your
language.

When the Locate-routine returns, the first word of the area
addressed by register 1 on entry must address the CRAB address
word, and the second word must address the original save area or
contain zeroes.

Selecting a CRAB address word

The CRAB address word that is returned by the Locate-routine has the
following requirements:

O It must contain zeroes before the C framework has been created.
O It must be modifiable by the SAS/C library, and never be modified
in any. other fashion.

184 Chapter 16

Framework
Generation (the
Framework-routine)

O It must occupy a different location for each distinct framework.
(Since a framework can be created only once for a single program
invocation, the only way to create multiple frameworks for the
same language is to run several multilanguage programs
simultaneously.)

o For performance reasons, it should be easy to access whenever
your language’s framework is active. (Your Prep-routine and Begin-
routine normally also require access to this word.)

If reentrancy is not a requirement, you should probably define a
unique CSECT as the CRAB address word. (This technique is used by
the FORTRAN example because FORTRAN does not support
completely reentrant programs.)

If reentrancy is a requirement, this technique cannot be used
because the library stores into the CRAB address word. For use in a
reentrant application, the CRAB address word must be located in
dynamically allocated memory. An ideal location, if your language
supports it, is in a user word defined by your language’s run-time
library. For instance, the Pascal ILC implementation uses a user word
defined by Pascal in its PCWA control block. If no user word is
available, you may be able to borrow a word in a control block
associated with some unusual language feature (for example,
multitasking or telecommunications), and publish a restriction that the
feature for which the field is normally used is not available. You
should be familiar enough with your language’s implementation to
know that use of this word will not produce any undesirable side-
effects.

The Framework-routine, named L$InamF, where nam is your
language’s generic name, must be written in assembler language. It is
called by the library framework manager to create your language’s
framework. See Figure 16.1 for an illustration of the position of the
Framework-routine in the task of creating a non-C framework.

The framework for your language will technically be created by
your language’s run-time library. The purpose of the Framework-
routine is to

O create an argument list in the format required by your language.
The argument list should specify any run-time options requested by
the call to mkfmwk, and should make the CRAB address available to
the Main-routine.

O create your language’s framework by passing control to the Main-
routine, a main routine written in your target language. Depending
on the conventions of your language, the Framework-routine might
call the Main-routine directly, or it might call an intermediate
library routine. For instance, the sample FORTRAN routine calls
the Main-routine directly, while the corresponding PL/I routine
calls the PL/I library routine PLISTART, and PLISTART calls the
Main-routine.

On entry to the Framework-routine, register 1 addresses a two-word
argument list. The first word contains the address of the CRAB, and
the second word addresses a null-terminated string containing the
run-time options for your language requested in the program’s call to
mk fmwk. The Framework-routine must make the CRAB address
available to the Main-routine and must pass the run-time options to

The Main-routine

The Quit-routine

Implementing ILC 185

the run-time library for your language. For a typical language, you
perform both functions by building a string containing both the run-
time options and the CRAB address, separated by a language-defined
separator, and then pass this string to your Main-routine.

It is usually wise to convert the CRAB address to a printable form
(such as hexadecimal or zoned decimal) before copying it to the
argument string because some languages tokenize or otherwise modify
their argument list if it contains special characters that might
accidentally be present in binary data.

The sample FORTRAN routine, LSIFORF, does not conform to this
pattern because FORTRAN does not permit the main program to
receive arguments. The CRAB address is therefore stored in a CSECT
that can be accessed by the FORTRAN Main-routine, as a COMMON
block.

Upon termination of your language’s framework, control returns to
your Framework-routine. You should release any dynamically
allocated memory and return with the value in register 15 that was
returned to you by the Main-routine.

The Main-routine, normally named L$InamM, where nam is your
language’s generic name, is called, directly or indirectly, by the
Framework-routine to cause your language’s framework to be created.
This routine must be written in your target language and must be
defined as a main routine according to the conventions of your
language. Note that there is no specific code in the Main-routine to
create the framework. Framework creation should happen
automatically when the Main-routine is entered, because it is defined
as a main routine.

See Figure 16.1 for an illustration of the position of the Main-
routine in the task of creating a non-C framework.

The only explicit action required of the Main-routine is to call the
Begin-routine, passing it the CRAB address. The CRAB address is
normally passed to the Main-routine as its only argument by your
Framework-routine, as described previously.

Some languages may not permit you to name the Main-routine
according to the conventions. For instance, some versions of
FORTRAN restrict you to six-character identifiers, and COBOL does
not allow the $ symbol. You can assign a different name to this
routine if necessary, because it is referenced only by the Framework-
routine. (For instance, the sample FORTRAN routine is named
L$IFOM.) However, the object file must conform to the naming
conventions so it can be successfully included by ILCLINK.

The Quit-routine, normally named L$InamQ, where nam is your
language’s generic name, is called by your Comm-routine to terminate
your language’s framework. It should be written in your target
language. See Figure 16.7 for the position of the Quit-routine in the
process of handling unexpected termination of the C framework.

The Quit-routine receives a single argument, which is an integer
specifying the return code value that should be returned in register
15 after the framework is terminated. The Quit-routine should use
whatever statements are necessary in your language to set the return
code as requested, and then terminate execution.

186 Chapter 16

The Pre-Prolog
(Prep) Routine

Two versions of a FORTRAN Quit-routine are provided, one for VS
FORTRAN Version 2, and one for previous versions. (Previous
versions of FORTRAN did not provide a way to specify a variable
return code, so the version 1 Quit-routine supports only some return
codes.)

Some languages may not permit you to name the Quit-routine
according to the conventions. For instance, some versions of
FORTRAN restrict you to six-character identifiers, and COBOL does
not allow the $ symbol. You can assign a different name to this
routine if necessary, because it is referenced only by the Comm-
routine. (For instance, the sample FORTRAN routines are named
L$IF1Q and L$IF2Q.) However, the object file must conform to the
naming conventions so it can be successfully included by ILCLINK.

The Prep-routine, named L$InamP, where nam is your language’s
generic name, must be written in assembler language. It is called in
place of the C library prolog by any C function compiled with the
INDep compiler option. The entry point to the Prep-routine must be
named L$UPREP. Note that the Prep-routine is used only when a
program that uses exactly two languages (C and your language) is
executed. If more than two languages are in use, a language-
independent version of LEUPREP is used instead. The Prep-routine is
responsible for routing control to your Comm-routine when a routine
in your language calls a C function.

See the SAS/C Compiler and Library User’s Guide for general
information about LSUPREP and the INDep compiler option. The use
of LAUPREP requires that your language follow some of the 370
standard linkage conventions for its calls, notably,

O register 15 must contain the address of the called routine

O register 14 must contain the return address

O register 13 must address a 72-byte save area in which registers can
be saved.

When L$UPRERP is entered, all registers except register 14 have the
same contents as when the C function was called. Register 14 serves
as a base register. The registers have already been saved by compiled
code in the save area addressed by register 13, and you must not save
them again, or information will be lost. Note that the Prep-routine
may be entered while either the C process or the non-C process is
running.

The flow of control through the Prep-routine is illustrated in Figure
16.9.

Implementing ILC 187

Figure 16.9 C Process Non-C Process
The Prep-routine

non-C @

routine ® |

l

C @

function

l

. ®
Prep-routine
® @
L$CICTL <--- - » Comm-routine

®
C ®
function
@

Prep-routine

188 Chapter 16

The flow of control represented in the diagram is as follows:

1.

2.

10.
11.

A non-C routine calls a C function. The non-C framework and
the non-C process are active at this time.

Generated code in the INDep-compiled C function saves registers
and transfers control to the LEBUPREP entry point of the Prep-
routine.

. The Prep-routine, as described below, transfers control to your

Comm-routine, passing it the address of the called function and
its argument list.

. The Comm-routine sends a CALL message to the C process.
. The CALL message is received by L$CICTL, which calls the C

function passing the requested argument list.

. Generated code in the INDep-compiled C function saves registers

and transfers control to the LEUPREP entry point of the Prep-
routine.

. The Prep-routine determines that the C framework is active and,

therefore, returns control to the C function.

. The C function executes and returns to L$CICTL.
. L§CICTL sends a RET message to the non-C process to inform it

that the called function has returned.

The Comm-routine receives the RET message.

The Comm-routine returns. Because of the linkage used by the
Prep-routine, return is made directly to the original non-C
function, not to the Prep-routine.

You should implement the above flow of control in the following
steps:

1.

Check for the constant ‘CSA’ in the first three bytes of the area
addressed by register 13. If this constant is present, the C
function was called by another C function, and no ILC
processing is required. In this case you should either return
directly to the called function or to the C library prolog, as
shown in the sample code at the label PREPOK.

. Locate your language’s CRAB address word (as defined by your

Locate-routine), and put its address in register 1. (Since step 1
has established that the calling routine is not in C, you can
assume that your language’s framework is active, and that any
registers with defined meanings in that framework are correct.)
If the CRAB address word contains zeroes, the C framework has
not yet been created. In this case you should load the address of
the library routine LSCINCE into register 15 and branch to
register 15. This routine writes an appropriate diagnostic and
then issues a user ABEND 1234.

. If the CRAB address word contains a nonzero value, load

register 15 with the address of your Comm-routine, reload
register 14 from the save area, and branch to register 15. Before
you call the Comm-routine, you may want to copy the saved
register 15 and register 1 values to the CRABDWK field of the
CRAB. This will be necessary if you have to save registers in the
register 13 save area before allocating an area of your own in
which to save these values. See Comm-routine memory
management later in this chapter for more information on this
situation.

Argument
Transformation (the
Xform-routine)

Figure 16.10
The Xform-routine

Implementing ILC 189

Because you reload register 14 before calling the Comm-
routine, control does not return to your Prep-routine when the
Comm-routine’s processing is complete.

Note that these linkage conventions must be followed exactly, or the
results are unpredictable. This is required so that the same results
will be obtained whether your Prep-routine or the language-
independent version of LEUPREP is used.

The Xform-routine, named L$InamX, where nam is your language’s
generic name, is called by LSCICTL when a C function calls a routine
in your language. Its purpose is to transform the argument list
generated by the C compiler for a routine in your language into one
that can be passed to the called routine. Unlike the other support
routines, the Xform-routine runs as part of the C process and should
be written in C. (It may also be written in assembler, subject to the
rules for mixing assembler routines with C described in the SAS/C
Compiler and Library User’s Guide.)

The position of the Xform-routine in the task of calling a non-C
routine from C is shown in Figure 16.10.

C Process Non-C Process

L]

C @

function

l

@
L$CILCL @
®

|]

Xform-routine

Comm-routine

0®

1. A C function calls a __foreign routine. (The compiler
generates code to call the library routine L$CILCL.)

2. L$CILCL is entered and calls your Xform-routine, passing it the
compiler-generated argument list.

190 Chapter 16

. Your Xform-routine transforms the argument list and returns the
address of a list of arguments to be passed to the called routine.
(The Xform-routine may also set a flag requesting to be called
again after the called routine returns.) Control is returned to
L$CILCL.

4. L$CILCL sends a CALL message to the non-C process, passing

the address of the non-C function and of the argument list
constructed by the Xform-routine.

5. The Comm-routine calls the requested routine. On completion of

the called routine, it sends a RET message back to the C process.

6. L$CILCL receives the RET message and, if requested, calls the

Xform-routine again.

7. On the second call, the Xform-routine may free the argument list

that was passed to the called routine.

The linkage conventions for the Xform-routine are described in C as
follows:

int L$InamX(unsigned *cargs, char *cret, char **xoutargs,
char **outret, int *after);

An illustration of the argument list structure is shown in Figure
16.11.

Implementing ILC 191

cargs list
cret of
outargs tokens
outret and
after pointers
|
return value
area
v
set by
XForm-routine
\ \
L$CICTL Comm-routine
communication area communication area
\J
argument
list
for
called
routine
Figure 16.11
Argument List for the .
Xform-routine .

192 Chapter 16

A summary of the arguments is as follows:

cargs
is a pointer to a list of tokens and pointers generated by the
compiler that completely describes the call, including
argument types, argument values, and the return value type.
See below for a complete description of how to interpret this
list. This argument, and the list it addresses, is input only; it
must not be modified.

cret
is a pointer to an area in which L$CICTL expects any return
value from the called function to be stored. This argument is
input only.

outargs
is the address of a fullword in which the Xform-routine can
store the address of the transformed argument list to be
passed to the called routine in your language.

outret
is the address of a fullword in which the Xform-routine can
store a value to be passed to the Comm-routine. The word
addressed by outret is normally used to communicate
return-value information to the Comm-routine. See Return
value processing later in this chapter.

after
is a pointer to a fullword flag that distinguishes calls to the
Xform-routine. The flag is set both by L§CILCL and by the
Xform-routine. When the Xform-routine is initially called, the
flag’s value is zero. The Xform-routine sets the flag’s value to
nonzero to request another call after the called non-C routine
has completed execution. If this flag is set on return from the
Xform-routine, L§CILCL will call the Xform-routine again
after the called routine has returned, with the flag containing
the value stored by the previous call. This second call is
normally used to free storage allocated at the time of the first
call.

The Xform-routine should return zero if it was able to complete
successfully. If it was unable to complete, for instance, because it was
unable to allocate memory, it should return the value of errno
associated with the failure. If the Xform-routine returns a nonzero

value, LSCICTL writes an explanatory message and issues user
ABEND 1235.

Interpreting the compiler’s token list

This section describes the structure of the cargs argument passed to
your Xform-routine. Your Xform-routine should include the header
file <ilctok.h> in order to obtain definitions of the symbols used in
this discussion.

The cargs pointer addresses a list of tokens and pointers. There
are several types of tokens, identified by a token id stored in the first
byte. A value in the cargs list that does not begin with a defined
token id is a pointer, not a token. (Each token id has the 0x80 bit set.
Since C pointers do not normally have this bit set, there is little
chance of confusion between tokens and pointers.)

Implementing ILC 193

For most token types, the second byte of the token (called a tag)
identifies a data type, and the last two bytes specify a length. The
header file <ilctok.h> defines two macros: Tag, which combines a
token id and a tag, and Token, which builds a token from a token id,
a tag, and a length. These macros can be used to improve the
readability of code that processes the tokens generated by the
compiler. See the sample Xform-routine for examples.

The layout of the cargs list is as follows:

Element 0
is the address of the routine in your language to be called. If
this routine was declared in C as a function pointer rather
than as a function, the 0x80000000 is set in this word. (See
Function Pointer Implementation later in this chapter for
more information.) You do not ordinarily have to process this
element.

Element 1
is a return token whose token id is named TOK_RET. The
remainder of this token specifies the type of the return value,
which will be void if the routine is not expected to return a
value.

Element 2
may be a language token. For a __foreign routine, a
language token is present only if it was passed by the user in
his function call. The token id for a language token is named
TOK_LANG. The rest of the token contains information that is
meaningful only to the library.

Last element
is an end-of-list token, whose token id is TOK_END. The other
bytes of this token are zeroes.

Other elements
(after any language token and before the end of list token) are
either value tokens, macro tokens, or pointers. A value token
has a token id of TOK_ARG, and a macro token has a token id
of TOK_MAC. A value token supplies information about the
data type of a non-pointer argument to a non-C routine. Each
value token is followed by a pointer to the argument
described by the token. A macro token supplies information
from a data type conversion macro. The order of macro
tokens, and any following data, depends on the generating
macro.

The tag values in return tokens, value tokens, and macro

tokens specify a data type or class of data types. The defined
tag values and the corresponding C types are:

TYP_VOID
specifies void. This is valid only for a return token.

TYP_INT
specifies either an integer or a pointer type. (Because
the compiler does not generate tokens for pointer
arguments, a pointer type could occur only for a
return or macro token.) The size of the associated
value is specified in the token’s length field. For
example, Token(TOK_ARG, TYP_INT, 2) isa
value token for a short int argument.

194 Chapter 16

TYP_FLT
specifies a floating-point type. The size of the
associated value is specified in the token’s length field.
For example, Token(TOK_RET, TYP_FLT, 8) isa
return token for a routine that returns a double.

TYP_STRING
specifies a fixed-length string structure type
(struct {char text [n}];}). If the compiler
option VString was not used, TYP_STRING is also
used for an argument that is a string literal. Finally, a
macro token with tag TYP_STRING is generated by the
_STRING data type conversion macro. The size of the
structure or string is specified in the token’s length
field.

TYP_VSTR
specifies a varying-length string structure type
(struct {short len; char text [n];}).
The size of the structure (including the length field)
is specified in the token’s length field. For example,
Token(TOK_RET, TYP_VSTR, 22) is a return
token for a varying-string structure containing a char
array of length 20.

TYP_STRLIT
specifies a string literal argument in a function
compiled with the VString compiler option. The
pointer following the token addresses the string data,
which is preceded by a compiler-generated halfword
prefix containing the string length. The string’s length,
not including the prefix, is specified in the token’s
length field.

TYP_STRUCT
specifies a structure or union type, other than one of
the two string structure types. The size of the structure
or union is specified in the token’s length field.

TYP_CFUNC
specifies a C function or function pointer argument,
that is, one not declared with the __asm keyword or
any of the ILC keywords such as __pli or
__foreign. See Function Pointer Implementation
later in this chapter for details.

TYP_FFUNC
specifies a __foreign function pointer. The argument
is a function pointer, not a routine name. See Function
Pointer Implementation later in this chapter for
details.

TYP_AFUNC
specifies an __asm routine or function pointer, or a
—_foreign routine. The next element in the list is
the address of the code for the routine. See Function
Pointer Implementation later in this chapter for
details.

Implementing ILC 195

TYP_BIT
specifies a bit string or set argument. These tokens are

generated by the _BIT and _SET data type conversion
macros.

TYP_DIM
defines a dimension of an array argument. These
tokens are generated only by the use of the _ARRAY
macros. The number of elements for this dimension of
the array is specified in the token’s length field. See
Output of the _ARRAY Macros later in this chapter
for further information.

TYP_ELEM
defines an array element. The type of the element is
not specified, but the size of the element in bytes is
present in the token’s length field.

TYP_INV
defines an argument to a __foreign function that
was found to be invalid during compilation. For
instance, a ___pli function pointer passed to a
__foreign routine generates this sort of token.

user-defined tokens
may have tags with numeric values from 24 through
30, for use by your own data type conversion macros.
All other tag values are reserved for use in future
SAS/C software releases.

Token list examples Following are two examples of calls to routines
declared as __foreign, and of the token lists generated by the
compiler and passed to the Xform-routine as a result. The first is a
simple example:

__foreign void simple();
char val;

simple(&val, 14, "some text");

The token list generated by the compiler for this call contains the
following words (in mixed assembler and C notation). The example
assumes the compiler VString option was not used.

V(SIMPLE)

Token(TOK_RET, TYP_VOID, 0)

gval (no preceding value token for a pointer argument)
Token(TOK_ARG, TYP_INT, 4)

a1l (a pointer to an integer 14)

Token (TOK_ARG, TYP_STRING, 9)

"some text" (a pointer to the first character of the literal)

Token(TOK_END, 0, 0)

196 Chapter 16

Here is a more complicated example, using a typedef:

typedef struct
{
short len;
char text [20];
} vstr20;
—foreign vstr20 (*complex)();
vstr20 ans;

struct node
{
struct node *next;
char *name;
} head;
double a [20])[20];
char flags [5];

ans = (*foreign)(head, _ARRAY2(a, 20, 20),
_BIT(flags, 36));

The token list generated by this example is

A(X'80000000'+&complex)
Token(TOK_RET, TYP_VSTR, 22)
Token(TOK_ARG, TYP_STRUCT, 8)
&¢head

Token(TOK_MAC, TYP_DIM, 20)
Token(TOK_MAC, TYP_DIM, 20)
Token(TOK_MAC, TYP_ELEM, 8)

a (a pointer to the first element)
Token(TOK_MAC, TYP_BIT, 36)
flags (a pointer to the first element)

Token(TOK_END, 0, 0)

Adding your own data type conversion macros If your language has
data types with no exact C equivalent, or several data types that all
have the same equivalent, you may want to define your own data type
conversion macros. (Guidelines to establishing equivalent data types
are given in Miscellaneous User-Supported Language Issues later in
this chapter.) Tag values 24 through 30 are reserved for your use.

Each data type conversion macro replaces its argument or
arguments by two or more values separated by commas. This does not
represent a C comma-expression and, therefore, must not be enclosed
in parentheses. When a conversion macro is replaced, its output is
interpreted as several arguments in the called routine’s argument list.
Usually, all generated values other than the last are tokens, and the
last value is the address of the data to be passed. (See Qutput of the
—ARRAY macros later in this chapter for another possibility.) Tokens
must be cast to void * by the macro so that the compiler will insert
them unchanged into the argument list. Note that the compiler
generates value tokens for any non-pointer expression generated by
your macros, so be sure to use an addressing operator (¢ or a) on
such expressions unless these tokens are useful.

Implementing ILC 197

A typical conversion macro, _BIT, is implemented as follows:

#define _BIT(x, size) (void *) (0xd5040000+(size)),\
) (void *)(x)

Thus, when the macro call _BIT (ptr, 32) appearsin a

— foreign argument list, it is replaced by two arguments:
0xd5040020 and (void *) (ptr). Because both of these values are
pointers, the compiler stores them unchanged in the argument list
passed to L§CILCL. The first argument is a macro token with tag
TYP_BIT, while the second is the address of the bit data.

Output of the _ARRAY macros If your language, like C, passes an
array as a pointer to the first element, no data type conversion macro
is required to pass an array correctly. For a language such as PL/I,
where information on array bounds must be passed with the array,
use of a data type conversion macro is generally necessary. Four such
macros are defined in <ilc.h>: _ARRAY, _ARRAY2, _ARRAY3
and _STRARRAY. You can define other such macros yourself, if
necessary.

The output of the _ARRAY set of macros consists of a list of
TYP_DIM tokens, one for each dimension, followed by a TYP_ELEM
token giving the element size, followed by a pointer to the first array
element. Note the macro’s use of the compiler’s builtin operator
__sizelem, which returns the element size for an array argument
(and is equivalent to sizeof for a scalar).

There may be array types that you want to support for which
simply having the dimensions and element size is insufficient. The
—STRARRAY macro can be used as a model for these cases.
_STRARRAY assumes that its argument is an array of string
structures, either fixed-length or varying-length.

This macro is defined in <ilc.h> as follows:

4define _STRARRAY(x, dim) (void *) (0xd5800000+(dim)), *(x)

The first item in its expansion is a macro token with tag TYP_DIM.
The second item in the expansion is a fixed-length or varying-length
string structure for which the compiler generates a value token of
appropriate type, followed by a pointer to *x, that is, of course,
identical to the address of the first element of x.

Return value processing

Two methods of processing return values are commonly used in 370
high-level languages: either the return value is returned in a register,
or it is returned in memory. Which technique is used (and which
register is used) can depend on the data type. For instance, FORTRAN
returns integer and floating-point return values in registers, but
returns strings in memory.

The implementation of SAS/C ILC as several communicating
processes does not allow return values to be passed between
languages in registers. It is always necessary for such return values to
be passed through memory, whether or not this is required when only
a single language is used. When SAS/C ILC is used, return values are
always returned via a return value area, allocated by the process of the

198 Chapter 16

calling language. For instance, in a call from C to a non-C routine, the
return value area is allocated by the C process.

In the case of a call from a C function to a non-C routine, the
return value is handled in the following way. (This list is intended to
describe a typical case. Some languages may require additional or
different steps, depending on their conventions.)

1. The code generated for the call to the non-C routine invokes
L$CILCL. If the non-C routine returns a scalar, the compiled C
code expects the result to be returned in a register. If the non-C
routine returns a structure, the argument list is preceded by a
pointer to a memory area in which the return value should be
stored.

2. If the non-C routine returns a scalar type, LSCILCL allocates an
8-byte return value area. If it returns a structure, the return
value area is the area passed by the calling C function.

3. The return value area address is passed to the Xform-routine as
the cret argument. If the non-C language returns this type of
data in memory, the Xform-routine generally needs only to put
the address of the return value area at a defined location in the
argument list.

If the non-C language returns this type of data in registers, the
location of the return value area must be communicated to the
non-C process. In this case, the Xform-routine generally copies
the return area’s address to the fullword addressed by the
outret argument.

4. When L$CILCL sends a CALL message to the non-C process, it
passes the contents of the *outret fullword. (By the previous
step, this is ordinarily the return area address.)

5. The Comm-routine calls the requested non-C routine. When the
called routine returns, if the return value is in a register, the
Comm-routine stores it into the return area address passed from
the C process.

6. The Comm-routine sends a RET message to the C process to
inform it that the call is complete. If the return value type is a
structure, the return value has already been stored. If not,
L$CILCL loads the value from the return value area into the
correct register before returning to C.

The sequence of events for a call from a non-C routine to a C
function is similar. Because the Xform-routine is not involved in this
process, it is presented in the Comm-routine discussion later in this
chapter.

Xform-routine return value handling Two of the arguments to the
Xform-routine are intended for use in return value handling. The
cret argument addresses an area in which the return value is to be
stored by the non-C process unless the called routine is declared as
returning void, in which case cret is zero. If the called routine
returns a scalar value, cret addresses an 8-byte area, regardless of
the size of the return value. If the called routine returns a structure,
cret addresses an area whose size is that of the structure. Note that
information about the size and type of return value is contained in the
second token of the cargs list.

The outret argument is the address of a fullword in which you
can store information to be passed to your Comm-routine about the

Implementing ILC 199

call. This word is normally used to pass the address of the return
value area, using the assignment *outret = cret. If your Comm-
routine needs to know the return value’s type, you can also pass the
return token by storing it into the return value area, via an
assignment such as * (unsigned *) cret = cargs [1]. This
technique is used by the FORTRAN Xform-routine.

If return value processing for your language does not require the
use of outret, for example, if all return values are returned in
memory addressed by the called routine’s argument list, you can use
the outret argument for some other purpose or ignore it.

Sample FORTRAN Xform-routine

The supplied FORTRAN Xform-routine is an example worth
considerable study before you attempt to code your own. Your routine
will differ in many details from the FORTRAN example, but you will
probably want to retain its general structure and some of its
algorithms.

The processing of the sample Xform-routine can be divided into the
following steps:

1. See if the after argument indicates this is a call after a called
FORTRAN routine has returned. If so, go to step 7.

2. Make a preliminary scan of the cargs list. If there are no
tokens in the list, and if the return type is not string, then the
argument list after the language token is a valid call-by-reference
argument list. In this case, no transformation is necessary, and
the Xform-routine can simply return to the Comm-routine after
storing the address of the first argument within the cargs list
into *outargs.

3. If there are tokens in the list or a string is returned, compute
the size of the argument list that must be passed to FORTRAN.

4. Allocate some space for the Xform-routine’s output argument list.
The sample routine uses an internal stack for this purpose to
avoid a call to malloc each time FORTRAN is called.

5. Make a second pass over the cargs list, putting the appropriate
information in the output list. For most arguments, this simply
involves discarding the tokens, and copying over the pointers to
the arguments (because FORTRAN normally uses call by
reference). If any strings are passed, however, FORTRAN
requires a secondary argument list containing string lengths.
Information is extracted from any string tokens and used to
build this secondary list.

If string arguments are passed, FORTRAN requires an 8-byte
prefix to the argument list containing control information. In this
case, the value returned to L§CICTL via outargs addresses the
first byte after the prefix.

6. Process the return value and return. If the return value is a
string, it is passed to FORTRAN as though it were the last
argument. If it is not a string, the return token is copied to the
return value area, whose address is passed to the Comm-routine
via outret.

7. On reentry after the FORTRAN routine has returned, remove
space allocated from the internal stack for this routine’s
arguments, and return.

200 Chapter 16

Beginning
Framework
Execution (the
Begin-routine)

Other noteworthy aspects of the sample routine are:

O The Xform-routine is expected to diagnose the appearance of any
unrecogrized or unsupported token types, either for the return
value or for a function argument. The tokens should then be
ignored, and the corresponding argument passed by reference. The
library routine LSCIAWN may be called to generate an invalid
argument diagnostic. It has two arguments, the name of the
language being called and the argument number. An argument
number of 0 indicates an unsupported return value type.

0 The memory allocation algorithm in the sample routine uses a
private external area for its stack. (A stack organization is necessary
because of the possibility of nested calls to FORTRAN, each with its
own argument list.) Most of the memory allocation code deals with
the possibility of stack overflow. Because stack overflow can occur
only with greatly nested calls or very long argument lists, you could
simplify your routine by removing most of this code.

See Function Pointer Implementation later in this chapter for a
discussion of the X-routine’s processing of TYP_CFUNC, TYP_FFUNC,
and TYP_AFUNC tokens.

The Begin-routine, normally named L$InamB, where nam is your
language’s generic name, must be written in assembler language. It is
called by your Main-routine to complete framework initialization. Its
purpose is to issue the CCOMM macro to inform the C process that
the other language’s framework has been created. The role of the
Begin-routine in the initialization of the non-C framework is illustrated
in Figure 16.1.

After completion of the CCOMM macro, the Begin-routine has the
same functionality as the Comm-routine, namely, to communicate with
the C process and to call routines in your language as directed. For
this reason, the Begin-routine is usually implemented as an entry
point to the Comm-routine, allowing most of their code to be shared.
Details about the CCOMM macro and the operation of this shared
code is discussed in Communicating with the C Process later in this
chapter.

The Begin-routine expects to receive the CRAB address, in some
form, in its argument list. (See the Framework-routine and Main-
routine descriptions for details.) The Begin-routine must receive the
CRAB address so that it can pass it on to other ILC routines via the
CCOMM macro, and so that it can store it in the CRAB address word.
The only absolute requirement is that the CRAB address be available
to the Begin-routine; some other method of passing it can be used if
passing it as an argument from the Main-routine is not practical.

The Begin-routine terminates only when the C process sends a
message to quit. When a QUIT message is received, shared code in
the Comm-routine checks to see whether execution started at the
Begin entry point or the Comm entry point. If execution started at the
Begin entry, a QUIT message indicates that a C function called
dlfmwk. The Begin-routine therefore returns to its caller (the Main-
routine), allowing the framework to be terminated. See Figure 16.6
for an illustration of the role of the Begin-routine in non-C framework
termination.

Controlling
interlanguage Calls
(the Comm-routine)

Implementing ILC 201

Some languages may not permit you to name the Begin-routine
according to the conventions. For instance, some versions of
FORTRAN restrict you to six-character identifiers, and COBOL does
not allow the $ symbol. You can assign a different name to this
routine if necessary, because it is referenced only by the Main-routine.
(For instance, the sample FORTRAN routine is named L$IFOB.)

Note that ILCLINK assumes that an INCLUDE statement is not
required for the Begin-routine because it is ordinarily an entry point
to the Comm-routine. If your Begin-routine is separate from your
Comm-routine, you should store the object code for both in a single
file, named L$InamC, where nam is your language’s ILCLINK name.

The Comm-routine, named L$InamC, where nam is your language’s
generic name, must be written in assembler language. It is called by
either your Prep-routine or by the library’s generalized LSUPREP
routine to manage a call from your language to a C function. After
any necessary preprocessing of the call, the Comm-routine issues the
CCOMM macro to inform the C process that a C function should be
called. After completion of the CCOMM macro, processing by the
Comm-routine depends on data returned by the C process via the
CCOMM macro. This processing is common to both the Begin-routine
and the Comm-routine.

The position of the Comm-routine in the task of calling a C function
from a non-C routine is illustrated in Figure 16.3.

The linkage conventions for the Comm-routine are slightly non-
standard due to entry from LSUPREP. These conventions may not be
changed because they are used by the library’s generalized LSUPREP,
which can be used with any language. Recall that the Comm-routine is
given control when a C function is called from a routine in your
language. When the Comm-routine is entered, all registers except 15
and 1 contain the same data as when the C function was called.
Register 15 contains the Comm-routine’s entry point address, and
register 1 contains the address of your language’s CRAB address
word. The save area addressed by register 13 contains all the
registers at the time the C function was called. You can obtain the
original register 15 value (the C function’s entry point address) and
register 1 value (the C function’s argument list pointer) from this save
area.

Note that if you store registers in the save area addressed by
register 13, you overlay the previous register 15 and register 1 values
left there by LEUPREP. The library’s generalized LEUPREP copies
these register 15 and register 1 values to the CRABDWK field of the
CRAB so that they can be retrieved even if the Comm-routine saves its
registers. If your Comm-routine needs to save registers (for instance,
due to use of a language-supplied linkage macro), your Prep-routine
should also perform this copy so that your Comm-routine can retrieve
this data regardless of which version of LSUPREP was used.

See Comm-routine memory management and Error handling
considerations later in this chapter for further information on
managing this non-standard linkage.

202 Chapter 16

Communicating
with the C Process
(the Begin- and
Comme-routines)

The Comm-routine can terminate in one of two ways. If the
CCOMM macro receives a QUIT message from the C process, the
Comm-routine must call your Quit-routine to terminate the
framework. (Such a message is ordinarily sent as the result of the
unexpected termination of the C framework.) If the CCOMM macro
receives a RET message, it indicates that the called C function has
returned. The Comm-routine must handle this message by returning to
its caller. If your language returns data in registers, you must load the
return value appropriately before returning.

The Begin-routine/Comm-routine combination is the most intricate of
all the routines you have to write to support your language because of
the number of different tasks in which they participate. The primary
task is to communicate with the C process, directing it to call C
functions, and calling any non-C routines as directed by C. However,
there are important considerations for memory allocation, error
handling, return value handling, and function pointer handling, each
of which is discussed later in this chapter.

Recall that the Comm-routine “stands in” for called C functions in a
non-C process. Because the Comm-routine can call a routine in your
language on request from C, it must be able to execute recursively.
Because the Comm-routine may be active when an ABEND occurs in a
non-C routine, it is important that the Comm-routine not interfere
with your language’s diagnostic facilities. (For instance, its save area
must be in a format that will not confuse your language’s library.)
These two aspects place unique demands on the Begin- and Comm-
routines that do not apply to any of the other ILC support routines.

interlanguage communication packets

Communication between the C process and a non-C process is effected
by interchange of Interlanguage Communication Packets (ILCPs). You
prepare an ILCP in dynamically allocated memory to transmit using
the CCOMM macro. CCOMM transfers the contents of the ILCP to C,
and then waits for a response from the C process. The response is
also an ILCP, which CCOMM returns by copying it over the input
ILCP. (Thus, if you will need the contents of the ILCP after CCOMM
completes, you must keep an additional copy.)

An ILCP is 24 bytes long. You must allocate a single area of this
size, which you reference for all your uses of CCOMM. When the
Comm-routine is invoked recursively, this applies separately to each
level. That is, each level must define its own ILCP buffer. Usually, you
will want to simply include space for an ILCP in your dynamic work
area. (See Comm-routine memory management later in this chapter.)

You may not modify the ILCP other than through the CCOMM
macro. Figure 16.12 illustrates the layout of the ILCP.

Implementing ILC 203

Figure 16.12 (ffset

ILCP Structure

0 CRAB address word address
4 function code
8 called routine address

argument list address

12 (or quit return code)
16 return value area address
20 library use only

The function code is an integer specifying the kind of message
represented by the ILCP. The codes are defined by the COPY code
member CCONS. The message types you may have to process in your
Begin- and Comm-routine are “begin”, “call”, “return”, and “quit”
requests (symbolic names CCOMBEGN, CCOMCALL, CCOMRET, and
CCOMQUIT). For some function codes, the ILCP structure differs
slightly from that shown above. These differences are documented in
the next section.

Using the CCOMM macro

The CCOMM macro is issued to send a message to the C process, and
then to wait for a response packet. The macro completes when a
response is received; the response is copied over the input ILCP. Note
that the C process may execute for an indefinite period of time during
a call to CCOMM, and that the C calling sequence may change
radically between the time that CCOMM is issued and the time it
completes.

For instance, suppose that the C calling sequence is
main->mkfmwk at the time your Begin-routine issues CCOMM to
inform C that the framework has been created. The C process
resumes execution and later, when the calling sequence is
main->subl->sub2, sub2 calls a routine declared as
__foreign. The full C calling sequence will now be
main->sub1->sub2->L$CICTL when L$CICTL sends a response
packet back to your language’s process and execution of your Begin-
routine is resumed. ‘

The syntax of CCOMM common to all forms is as follows:

label CCOMM code,CRAB=address,PLIST=address, RESP=reg,
code-specific-operands

204 Chapter 16

where

code

CRAB=

PLIST=

RESP=

is a function code, specified as one of BEGN, CALL, or RET.
This indicates the type of message to be sent to the C process,
as follows:

o The BEGN operand is used by the Begin-routine to inform
C that the user-language framework has been successfully
created. Code-specific operands for use with BEGN are
described later in this list.

o The CALL operand is used by the Comm-routine to ask the
C process to call a C function. Code-specific operands for
use with CALL are described later in this list.

0 The RET operand is used by both the Begin-routine and
the Comm-routine to inform the C process that a called
routine in your language has completed. There are no
code-specific operands for use with RET.

is used to pass the address of the CRAB address word. This
operand is normally specified as (reg), where reg is a register
addressing the CRAB address word. Alternately, it may be
the symbolic name of a fullword pointing to the CRAB
address word. v

Caution: Pass the address of the CRAB address word, not
its contents.

specifies the address of the ILCP area. Each use of CCOMM
must specify the same area. This operand may be specified
either as the symbolic name of the ILCP or as (reg), where
reg is a register addressing the ILCP.

specifies a register number, without parentheses. On
completion of the CCOMM macro, this register addresses
response data from the C process. (This data begins at offset
8 from the ILCP.)

code-specific operands

OSA=address is required when the function code is specified
as BEGN.

The OSA operand specifies the address of the original save
area. (See Control Block Location earlier in this chapter for a
discussion of this area.) The address may either be the name
of a fullword containing the address of the original save area,
or (reg), where reg is a register addressing the original save
area.

If you cannot locate the original save area, you can specify
OSA=(reg), where the register contains zeroes. However,
because the BEGN function of CCOMM is issued only in your
Begin-routine, it is used only when your framework was
created via your Framework-routine and Main-routine. For
this reason, in this case the original save area is the one
allocated by your Framework-routine. You may be able to use
this fact to make this save area address available, even if the
address is not preserved by your language’s run-time library.

Implementing ILC 205

The following code-specific operands are required for function code

CALL:

CALL=
ARGS=
RETP=

CALL=

ARGS=

RETP=

entry-point
argument-list
return-area

specifies the entry point of the C function to be called. This
value should be extracted from the register 15 slot of the
save area addressed by register 13 on entry to the Comm-
routine (or from CRABDWK if supported by your Prep-
routine). This argument is normally (reg), where reg is a
register containing the entry point address. It may also be the
symbolic name of a fullword pointing to the entry point.

specifies the value that should be placed in register 1 when
the C function is called. Normally, this will be the value
stored in the register 1 slot of the save area addressed by
register 13 on entry to the Comm-routine. However, if
necessary, you can generate a new argument list and specify
its address instead. As with the CALL argument, ARGS can
specify either the symbolic name of a fullword pointing to the
argument list, or a parenthesized register containing the
argument list address.

specifies the address of an area (at least 8 bytes long) where
a return value from the called C function can be stored. See
Return value processing earlier in this chapter for more
information on this operand. This operand can be specified as
the name of a fullword addressing the return value area, or
as a parenthesized register containing the return value area
address.

When CCOMM completes, register 15 contains the function code
from the ILCP returned by the C process. The value will be one of
CCOMCALL, CCOMRET or CCOMQUIT. In addition, the RESP
register will address other response data, as described previously. See
the next section for information on processing the return information.

Post-CCOMM processing

The response to the CCOMM macro includes a function code that
should be interpreted as directions from the C process. It is easiest to
use the same piece of code after all uses of CCOMM in the Begin- and
Comm-routines. In the sample FORTRAN Comm-routine, this code is
located at the label FORCJOIN. The list below discusses each of the
possible function codes and suggests appropriate processing.

o If the function code in register 15 is CCOMQUIT, the C process has
requested your process to terminate. The return code that should be
returned to the caller of your language’s main routine is in the

ILCP,

in the slot labeled quit return code in Figure 16.12. (This will

be at offset 4 from the value in the RESP register.) The action you
should take in this case depends on whether this level of the

206 Chapter 16

Comm-routine was entered at the Begin entry point or the Comm
entry point.

o If entry was through the Begin entry point, process execution
should be terminated by returning to the caller of the Begin-
routine (the Main-routine). This case occurs when your
language’s framework is to be terminated due to a call to
dlfmwk from C. The return code information is not meaningful
in this case because any return code set will be discarded when
your process is deleted.

0 If entry was through the Comm entry point, execution should be
terminated by a call to your Quit-routine. You should pass to the
Quit-routine the return code from the ILCP as an argument.
Because the Quit-routine will be written in your language, you
must set up its argument list according to the run-time
conventions of your language. This case occurs when the C
framework terminates without having deleted your language’s
framework.

0 If the function code in register 15 is CCOMRET, the C function that

L$CICTL called at your request completed, and the Comm-routine
must now return to its caller. This function code is returned only
when the Comm entry point is used.

If the called C function returns a scalar, its return value has been
stored in the area addressed by the RETP operand of the completed
CCOMM call. If your language returns values in registers, you need
to load the return value appropriately before returning to your
caller.

See Returning values from C to your language later in this
chapter for further details.

If the function code in register 15 is CCOMCALL, the C process has
issued a call to a __foreign routine. In this case, the Comm-
routine must call this routine so that it will run in your language’s
process rather than in the C process. The address of the routine to
call, the address of its argument list, and the address of a return
value area are all addressable using the RESP register of the -
completed CCOMM macro call. Note the following additional
information about these addresses:

O The called routine address slot of the ILCP normally contains the
address of the routine that is to be called. If the high order bit
of this value is on, however, it represents a __foreign
function pointer. In this case, the address points to the function
pointer. The format of such a function pointer is determined by
you, but it is intended to be your language’s equivalent to a C
function pointer. For instance, a __p1li function pointer is
simply a PL/I ENTRY variable.

If the routine to be called is represented by a function pointer,
you have to find the actual address of the routine to call. There
may also be language-specific actions you have to take in this
case. For instance, in PL/I register 5 has to be loaded from the
second word of the ENTRY variable before the call is made.

See Function Pointer Implementation later in this chapter for
details.

0 The argument list slot of the ILCP contains the address that
should be loaded into register 1 before the routine is called. It
addresses the argument list constructed by the Xform-routine,
not the list generated by the compiler.

Implementing ILC 207

O The return value area slot of the ILCP contains any address
stored by the Xform-routine using its outret argument. This is
normally an area where the return value from the called routine
should be stored, but other uses are possible. See the Xform-
routine description earlier in this chapter for further details.

When you call a routine in your language, note that this routine
might itself call a C function. This call will be intercepted by the
Prep-routine and cause a recursive entry to your Comm-routine.
Your Comm-routine must not use static data areas in any way that
will cause recursive calls to fail.

After the routine you call in response to a CCOMCALL message
from C returns, you must inform the C process that it has
completed, using the RET function of the CCOMM macro. If the
called routine returned a value, this value must be passed back to
C. (You need to write code to do this if your language returns
values in registers. If it returns values in memory, you can usually
arrange for it to store return values directly in the area used by C.)

Upon completion of the CCOMM RET macro, you should branch
back to your common CCOMM completion code because the C
process may return any of the normal CCOMM responses.

Comm-routine memory management

Because the Comm-routine may be invoked recursively, it must use
dynamically allocated memory for its ILCP buffer and other work
areas. The run-time system for your language may provide an
interface by which assembler routines can obtain dynamic work areas
(or stack space) on entry. For instance, Pascal/VS provides a PROLOG
macro to allocate a work area, and an EPILOG macro to free the work
area and return. If your language provides such a facility, you should
use it in the Begin- and Comm-routines, especially since use of this
interface probably improves the ability of your language’s run-time
library to process errors that occur while your routine is active.

If you use an interface or macro provided by your language
implementation for this purpose, note the following:

0 The Begin- and Comm-routines should have work areas with
identical size and identical mapping, to facilitate the use of common
code. You should allocate a switch in your work area that can be
used to indicate which entry point was used, since processing of a
CCOMQUIT response from C varies depending on the entry point.

O Because argument information is present in the register 13 save
area on entry to your Comm-routine, you should not save registers
yourself unless you copy the saved register 15 and register 1 values
elsewhere. If you use a macro such as the Pascal PROLOG macro at
your Comm entry point, this may cause problems. The
recommended solution is to copy the saved register 15 and register
1 values to the CRABDWK fields in your Prep-routine. Later, the
CRAB can be located via the CRAB address word (passed in register
1), and the values copied to your work area. These values must be
saved before you issue the CCOMM macro, which may modify the
contents of CRABDWK.

O Some languages require the presence of a routine name in character
form at a fixed offset (sometimes negative) from the entry point.
You should include the name of your Comm-routine in this fashion

208 Chapter 16

if at all possible, in order to get more useful tracebacks and
diagnostics from your language.

The ILCENTRY and ILCEXIT macros If your language does not
provide a dynamic memory allocation interface, or if, as with
FORTRAN, it does not support recursion, you must use another
memory allocation technique. The SAS/C library provides ILCENTRY
and ILCEXIT macros for this purpose. When you use these macros,
you must note that you use them in your entries in the supported
language table.

Even though ILCENTRY and ILCEXIT have some aspects that make
them more convenient than using macros such as Pascal’s PROLOG,
you should use the language-supported macros rather than ILCENTRY
and ILCEXIT whenever possible. This is because ILCENTRY and
ILCEXIT may interfere with your language’s diagnostic capabilities;
any native macros are unlikely to have such adverse effects.

The ILCENTRY macro is intended to be used as the first instruction
of your Begin-routine or Comm-routine. The syntax of ILCENTRY is as
follows:

label ILCENTRY SYS=system, TYPE=type,CRABREG=regq,
CRABFMT=format ,WKREGS=(reg!,reg2,regl),
BASE=basereg,DSA=DSA-size OFLOW=flow

The ILCENTRY operands have the following meanings:

SYS=
is required. It must specify either SYS=0S or SYS=CMS to
indicate the operating system in use.

TYPE=
is required. It must specify TYPE=BEGIN for use in your
Begin-routine, or TYPE=CALL for use in your Comm-routine.

CRABREG=
specifies a register into which the macro can load the CRAB
address. If not specified, CRABREG=12 is assumed.

CRABFMT=
is used only for a TYPE=BEGIN call. This call assumes that
register 1 on entry addresses a call-by-reference argument list
where the first argument is the CRAB address in some
format. If CRABFMT=BIN is specified, the first argument is
assumed to address a fullword containing the CRAB address
in binary. If CRABFMT=CHAR is specified, the first
argument is assumed to address an 8-byte area containing the
CRAB address in zoned decimal. (If you require some other
format, you can easily update the macro to convert from this
format to binary.)

WKREGS=
specifies three registers that can be used as work registers. If
WKREGS is omitted, WKREGS=(2,3,4) is assumed.

BASE=
specifies the number of a register to be used as a base
register. If BASE is omitted, BASE=9 is assumed.

Implementing ILC 209

DSA=
specifies the size of the dynamic area to be allocated. This
operand is required. At least 96 bytes (72 bytes for a save
area plus 24 bytes for an ILCP) are normally required.
OFLOW=

specifies whether code should be generated to handle
overflow of the ILCENTRY stack. OFLOW=YES generates
substantially more code than OFLOW=NO. When a
framework is created, an initial area of 4K is allocated for
use by ILCENTRY, and overflow occurs only if this area is
filled. If OFLOW=NO is specified and an overflow occurs, it
will not be detected, and other storage areas will be overlaid,
or an 0C4 ABEND will occur. If OFLOW is omitted,
OFLOW=YES is assumed.

Note that, at the completion of the ILCENTRY macro with
TYPE=CALL, register 15 addresses the entry point of the C function
to be called.

The ILCEXIT macro should be used at any point in your Begin- or
Comm-routine where you want to return control to your caller. The
syntax of ILCEXIT is as follows:

label ILCEXIT CRABREG=reg,WKREGS=(reg!,reg2),PREVSA=reg

The ILCEXIT operands have the following meanings:

CRABREG=
specifies the number of a register containing the CRAB
address. If this operand is omitted, CRABREG=12 is
assumed.

WKREGS=
specifies two registers that can be used as work registers by
the macro. If this operand is omitted, WKREGS=(2,3) is
assumed.

PREVSA=
specifies a register containing the value in register 13 when
the Comm-routine was entered. (If your language returns
values in registers, you have to locate this area to store the
return value.) If this operand is omitted, ILCEXIT assumes
that this value is not in a register and loads it from the
standard chain field (offset 4) in the current save area.

Error-handling considerations

Depending on your language and its implementation, you may have to
take special actions in your Begin- and Comm-routines to avoid
interfering with your language’s ability to produce diagnostics and
tracebacks. This is more likely to be necessary with these routines
than with any others because the Comm-routine can call any other
routine in your language and, therefore, you will not always be able
to prevent errors or ABENDs.

210 Chapter 16

Language implementations differ so much from one to another in
this area that no absolute rules can be given, but you should
investigate the following:

O If possible, you should make the Begin-routine and the Comm-
routine appear to be written in your language. For instance, if your
language provides a macro like the Pascal PROLOG macro, you
should use it if at all possible. (Some languages, like Pascal, may
not let you call subroutines from assembler unless you do this.) If
your language does not provide a macro or document an equivalent
interface, you may want to list compiler-generated code and copy
the compiler-generated code for subroutine entry and exit into your
assembler routine.

o If you cannot emulate the compiler-generated linkage for your
language (for instance, because your language does not support
recursion), you should mark your save area to identify it as
reserved for an assembler routine rather than a high-level language
routine. By convention, a value of zero in the word at offset zero
from register 13 indicates an assembler routine. The ILCENTRY
macro automatically sets this word to zero.

0 When the Comm-routine is entered, the address of the called C
function is in the register 15 slot of the register 13 save area. Many
languages’ traceback algorithms use this value to find the name of
each active routine. Since the format for the entry point to a C
function is unlikely to be the same format as for your language, this
may cause gibberish in the traceback or other side-effects. After you
have stored the C function’s entry point somewhere else, you may
want to replace the value in the register 15 slot with the entry
point address for your Comm-routine, allowing the Comm-routine to
appear under its own name in the traceback. Note that for this to
work, the Comm-routine’s entry point must have the format
expected by your language’s run-time library.

O Except when you run under OS using the C run-time option
=multitask, all the language processes run in the same OS task
or CMS virtual machine. Each language process may use the ESTAE
or ABNEXIT macro to handle ABENDs. Due to the way these
macros are defined by OS and CMS, if any language process
ABENDs, all the ESTAE and ABNEXIT routines for all processes
are called. This is usually good because it allows each language to
produce a diagnostic and a traceback. .

However, some languages may attempt to retry an ABEND that
occurs in another language’s process. (PL/I is an example of a
language with this unpleasant habit.) Such a retry is doomed to fail,
because the retrying language’s framework may not be established
correctly, and the active save area chains will be formatted
according to C conventions rather than the retrying language’s
conventions. Usually, a second ABEND occurs during such a retry,
but only after the other language has done enough processing to
completely hide the cause and location of the original ABEND. Any
diagnostics from C or a third language then refer to the new
ABEND, not the original one, and are completely useless.

Any solution to this will be, of necessity, language dependent.
The best approach is to prevent your language from retrying after
an ABEND, perhaps by use of a run-time option or by setting error-
handling flags in a language control block. If you modify control
blocks to prevent ABEND retry, note that retry is a problem only
when some language other than your language is running. For this

Implementing ILC 211

reason, it is sufficient to inhibit retry only during the execution of
the CCOMM macro, thereby allowing your language’s normal
recovery procedures to be used when an ABEND occurs during its
own processing.

Returning values from your language to C

This section summarizes the considerations for support of calls from C

to routines in your language that return a value. Additional details

may be found in Return value processing in the section Argument
Transformation (the Xform-routine) earlier in this chapter.

0O When a __foreign routine is declared in the C program as
returning a type other than void, the compiler informs your
Xform-routine of the type of return value expected by means of a
return token in the generated token list. This token does not
provide a complete description of the type of return value. For
instance, integers and pointers are not distinguished. Two special
structure types corresponding to common 370 string
implementations are distinguished, but for all other structure types,
only size information is passed.

If your language distinguishes types that the C compiler does not,
you must impose restrictions to resolve ambiguities. (You should
choose the restrictions so as to support your language’s most
commonly used data types.) For instance, if your language returns
integers and pointers in different ways, you cannot support
FUNCTIONS of both kinds. If your language needs more
information about a returned structure than its size, you must
forbid FUNCTIONSs that return a structure.

Note that C does not support functions that return arrays. Even if
your language supports FUNCTIONSs that return ARRAYs, you
cannot call them from C unless you can support them in C as
functions returning a structure with an array member.

When C calls a routine that returns a structure, it places the
address of an area where the structure value should be stored 4
bytes before the parameter block addressed by register 1. Since
structure values are too large to return in registers, you probably
can simply copy the pointer to the return area to an appropriate
location in the argument list created by your Xform-routine to cause
the called routine to return its result correctly.

C expects non-structure return values to be returned in registers.
L$CICTL takes care of the detail of loading such return values into
the correct register during the processing of a return from a
FUNCTION in another language. Before calling your Xform-routine,
L$CICTL allocates an 8-byte area in which it expects the returned
value from the called routine to be stored, and passes the address
of this area to the Xform-routine.

If your language returns such values in memory, you can
probably simply copy the address of the L§CICTL-supplied area to
an appropriate location in the argument list created by the Xform-
routine to cause the called routine to return its result correctly.

If your language returns some or all such values in registers,
your Comm-routine will have to store the value returned by a
routine in your language in the L§CICTL-provided area. Normally,
the Xform-routine passes the Comm-routine this address via its
outret argument. Your Comm-routine will probably require type

212 Chapter 16

information about the return value to do this correctly. For
instance, different registers will be used for integer and floating-
point return values. The normal technique for making type
information available is for the Xform-routine to store the return
token in the first 4 bytes of the LSCICTL-provided area.

The return value must be stored left-justified in the return value
area; only the number of bytes required for the returned type
should be stored. For instance, two bytes should be stored for a
short return value. Note that you need not distinguish between
signed and unsigned return values, as this is handled
automatically by the compiled code for the calling C function.

Returning values from C to your language

This section summarizes the considerations for how to support calling
C functions that return a value from your language.

0 When your Comm-routine processes a call from your language to a
C function, much less information is available about return value
type than for a call in the other direction. The only information
available is a flag byte in the compiler-generated prolog code for the
called function.

The address of the prolog code will be in the register 15 slot of
the save area addressed by register 13 when your Comm-routine is
entered. It can be mapped by the CPROLOG DSECT. The byte
named CPROTYPE contains return value bit flags, with names and
meanings defined as follows:

0 The flag CPROSTRC indicates that the function returns a
structure or union.

0 The flag CPRODBL indicates that the function returns double
or float.

0 The flag CPROVOID indicates that the function returns no
value.

0 If none of CPROSTRC, CPRODBL, or CPROVOID is set, the
function returns an integral or pointer value.

0 The flag CPROSHRT indicates that the function returns a short
or float value. (If CPRODBL is also set, the function returns
float.)

0 The flag CPROCHAR indicates that the function returns a char.

Note that information on the size or mapping of a returned
structure is not available. This may force you to forbid altogether
calls to C functions returning structures, or to assume that such a
function returns one of the special string structures.

0 When the Comm-routine processes a call to a C function that
returns a structure or union, you must pass C an argument list with
the return value address located 4 bytes before the argument list. If
this is not the format used by your language, you may need to make
a copy of the argument list to pass to C.

O When the Comm-routine processes a call to a C function that
returns some scalar type, you must inform the C process of the
address of an area where L$CICTL can store the value returned by
the C function. The RETP argument of the CCOMM CALL macro is
used to identify this area. The return value is always stored left-
justified. For instance, if the called C function returns a short, the
return value is stored in the first two bytes of the return area. Note

Implementing ILC 213

that you can use RETP with CCOMM even for a function returning
a structure or void, as the RETP value is ignored by L$CICTL in
these cases.

0 When CCOMM CALL completes, if your language expects values to
be returned in registers, you must load the return value from
memory before returning.

Sample Begin- and Comm-routines

Because of the large number of issues to consider when writing a
Begin-routine and a Comm-routine, the sample versions of these
routines are not easy to follow. Now that most of the considerations
have been presented, it is possible to summarize the sample routines.
Note that these routines are only samples. Your routines may require
steps that are not needed for FORTRAN, and you may be able to omit
some steps that are unique to FORTRAN.

The FORTRAN Begin-routine is named L$IFOB to conform to
FORTRAN naming conventions, so it can be called by the FORTRAN
Main-routine. It performs the following steps:

O Use the ILCENTRY macro to obtain a dynamic work area. The
CRABFMT=BIN operand is used because the Main-routine passes
the CRAB address in binary. Note that use of ILCENTRY is
necessary because the FORTRAN library does not provide dynamic
memory allocation or recursion support.

O Record that the entry was at the Begin entry point.

o Store the CRAB address in the FORTRAN CRAB pointer word,
which is simply a CSECT, since FORTRAN does not support
reentrancy.

O Call the FORTRAN Locate-routine to find the address of the original
save area. For most languages, no such call is necessary, and the
save area address can just be loaded from a language control block.
However, finding this save area for FORTRAN is highly dependent
on the release of FORTRAN, and calling the Locate-routine allows
the release-dependencies to be isolated to this module.

O Issue the CCOMM BEGN macro to inform C that the FORTRAN
framework has been created. On completion of the CCOMM macro,
control is transferred to the label FORCJOIN to perform processing
common to both entry points.

The FORTRAN Comm-routine performs the following steps:

O Use the ILCENTRY macro to get a dynamic work area, and copy the
C function’s entry point and argument list to registers.

O Modify the register 15 slot of the previous save area to address the
Comm-routine’s entry point, to improve FORTRAN traceback
information.

DO Record that the entry was at the Comm entry point.

O Examine the called C function’s prolog to determine the return
value type.

g If the C function returns a structure, it is assumed that the
FORTRAN caller expects a CHARACTER*n string to be returned.
In this case, the last argument address passed by FORTRAN points
to the area in which the return value is to be stored. The Comm-
routine copies this value to the word before the argument list to
make it conform to C conventions. (Due to the layout of FORTRAN
argument lists, this word before the argument list will always be
allocated and modifiable.)

214 Chapter 16

Defining Equivalent
Data Types

o If the C function returns a scalar, pass the address of a doubleword
in the work area for C to copy the return value to.

O Issue the CCOMM CALL macro to instruct the C process to call the
required routine.

The remaining processing is common to both the Begin-routine and
the Comm-routine, beginning at the label FORCJOIN.

O Determine the function code returned by the CCOMM macro.

o If the function code is CCOMRET, the called C function has
returned. If the function returned a scalar, load the return value
into register O (if an integer) or floating register 0 (if floating-point).
The CPROTYPE byte of the called function is used to determine the
return value type.

FORTRAN treats a nonzero value in register 15 at return as
indicating use of a FORTRAN RETURN n statement in the called
routine. Therefore, zero is loaded into register 15 before return to
avoid any such misinterpretation. v

0 If the function code is CCOMCALL, the called C function is in turn
calling a FORTRAN routine. The Comm-routine loads registers 15
and 1 with data from the ILCP and calls the FORTRAN routine. On
return, it checks the token in the return value area to determine
the type of return value expected by C, and stores the correct
register (either general or floating register 0) in the return value
area. It then issues the CCOMM RET macro to inform C that the
called routine has returned, and branches to the start of common
processing to handle C’s response.

Note that the X’80000000’ bit may be set in the FORTRAN
routine address to indicate a __fortran function pointer rather
than an actual routine address. —_fortran function pointers are
the same as FORTRAN EXTERNALSs; that is, they simply contain
the address of the routine to be called. Therefore, the only special
requirement is an extra load to get the address of the routine,
rather than the address of the function pointer. See Function
Pointer Implementation later in this chapter for further discussion
of function pointer issues.

0 If the function code is CCOMQUIT, the C process is attempting to
terminate the FORTRAN process. If entry was via the Begin entry
point, it issues ILCEXIT to return control to the Main-routine. If
not, the Comm-routine calls the FORTRAN Quit-routine, passing it
the requested return code. The Quit-routine is referenced indirectly,
since different routines are used for VS FORTRAN Version 1 and
VS FORTRAN Version 2. This allows the Comm-routine to avoid
any version dependency of its own.

Miscellaneous User-Supported Language
Issues

This section discusses a number of issues that you may need to decide
as you implement ILC with a user-supported language.

Perhaps the most important issue for you to decide and document as
part of your ILC interface is that of compatible data types. In many
cases, this is easy. For instance, your language probably has a
fullword binary integer type, which is clearly equivalent to the C int.

Implementing ILC 215

Some considerations to take into account in less clear-cut cases are as
follows:

0 Remember that the data formats of corresponding types should be
the same. You must be careful not to be misled by superficial
similarities of types with different formats. For instance, your
language may have an enumerated data type. Recall that SAS/C
uses a fullword of memory for enum values and, therefore, you
cannot consider your language’s enumerations and C’s to be
equivalent unless yours also occupy a fullword.

0 The most likely source of difficulty is with string types. Your
language probably does not support null-terminated strings as a
data type. If your language represents strings as a simple array of
characters, you should be able to treat the fixed-length string
structure type struct {char text [n];} asan equivalent.
Similarly, if your language supports a string implementation like
PL/I VARYING strings (a halfword length followed by an array of
characters), you can treat the C type struct (short len;
char text [n];} as an equivalent. If this format is your
language’s primary string type, you should recommend the C
compiler option VString to the users of your interface so that C
string literals are passed to routines in your language with a
halfword length prefix.

If your language uses some other string representation, such as a
linked list of characters, you may be forced to document your
language’s format for the users of your interface and require them
to convert from your language’s format to C format. This is
especially true for calls from your language to C; for calls in the
other direction, your Xform-routine may be able to perform the
necessary conversions. With the Xform-routine, you probably will
be able to arrange for string literals and arguments passed using
the _STRING conversion macro to be successfully converted to
your language’s format. (However, see the next item.)

o If possible, you should avoid having two different equivalents to the
same type, one for use when C calls your language and one when
your language calls C. This is frequently tempting because of the
ability of the X-routine to remap arguments when your language is
called by C, but it also may be confusing. It might also force users
to convert between the two representations themselves in a function
that is called by one routine in your language and calls another
language.

o If your language supports structure or record types, verify that
your language’s alignment rules are the same as C’s. If they are
not, you will need to investigate how identical alignment can be
forced and document the results. Possible techniques include the
use of the C __noalignmem keyword or BYtealign option,
similar features of your language or, at worst, the introduction of
padding members.

Note that C does not support self-defining records (such as ones
defined with the PL/I REFER option), but so-called “variant
records” (as implemented in Pascal and Ada) can often be
represented as unions.

216 Chapter 16

Data Sharing
Considerations

Function Pointer
Implementation

In addition to issues raised by the different data types and formats of
other languages, there are those associated with different conventions
for passing arguments, defining external data, and so on. Some of
these issues are discussed below:

o If your language supports both call by value and call by reference,
you should encourage the use of call by reference. Call by value
conventions frequently vary from language to language, especially
with regard to alignment of the arguments. (The SAS/C conventions
are described in Chapter 3, “Communication with Other
Languages.”) If your language uses different conventions from
SAS/C, call by value will be difficult for all but the simplest data
types. On the other hand, with call by reference, the argument list
format must, in general, be a simple list of fullword pointers.

o If, like PL/I, your language passes arguments using descriptors (or
dope vectors), it is best to suppress them through use of a language
facility like the PL/I OPTIONS(ASM). If no such facility exists, you
must document for your users how to decode descriptors passed
from your language in C.

For calls from C to your language, you are in many cases able to
build any necessary descriptors yourself in your Xform-routine.

0 Note argument passing conventions for arrays. If your language
allows arrays of unknown size to be passed, it probably has its own
convention for passing the array size as an additional argument. If
this is the case, you should probably tell your users to use the
—ARRAY set of data type conversion macros to pass arrays to your
language, and in your Xform-routine build any supplementary
arguments required.

O Note whether your language’s implementation of external variables
always defines storage for them, or whether there is a form that
generates references without storage. This determines whether
external variables referenced from your language can be defined in
C, or whether they can only be defined in your language.

Also note if your language defines any unusual kinds of external
variables that are not implemented as external symbols in the
object module so you can document for your users that these
cannot be shared directly.

For some applications, it is desirable to be able to pass the address of
a routine in one language to a routine in another language. SAS/C ILC
offers some support for this, depending on the facilities available in
your language. With appropriate support, it is possible to do the
following:

O Pass a routine in your language the address of a C or assembler
function and call this function from your language.

0 Pass a C function the address of a routine in your language and call
this routine from C.

O Pass a routine in your language the name or address of a routine in
your language, and call it from your language.

Note that your language might support facilities such as this in one
of two ways. Some languages, such as C and PL/], treat routine
addresses as a full-fledged data type. Others, such as FORTRAN and
Pascal, limit you to passing routine addresses to other routines. The
method used changes the way you describe passing routines as

Implementing ILC 217

arguments but has little effect on the way you have to implement your
support. The rest of this discussion uses the term routine descriptor to
describe your language’s internal format for routines passed as
arguments, whether or not that format is associated with a special
data type. The term routine address is used to describe the physical
address of a routine’s entry point.

To implement support for passing routine descriptors, you must be
familiar with their format in your language. If a routine descriptor in
your language is simply the location of its entry point, you are unable
to support calls to C functions in other load modules from your
language. If, like Pascal or PL/I, your language provides auxiliary
information in routine descriptors, you can probably support these
calls.

In addition to being familiar with your language’s routine descriptor
format, you should also be familiar with the SAS/C function pointer
representation. This is described in the SAS/C Compiler and Library
User’s Guide.

Passing routine descriptors from your language to C

A user of your interface who refers in C to a routine descriptor in
your language must usually declare it as a —_foreign function
pointer. The size of a __foreign function pointer is 4 bytes; the
compiler makes no assumptions about its contents.

When a routine descriptor is passed from your language to C, none
of the interface routines can tell that this is happening and, therefore,
there is no opportunity to change its data format. The corresponding
argument in the called C function must therefore be declared so that
its format matches the descriptor format. This argument should be
declared as a __foreign function pointer if either of the following is
true:

O routine descriptors in your language are 4 bytes long

O routine descriptors are passed by reference. In this case, the
—foreign function pointer will be the descriptor address rather
than the descriptor value.

If your language uses more than a fullword for routine addresses
and passes them by value, you have to define some special type other
than a function pointer type to represent them. Usually, this type will
be a structure type including a __foreign function pointer as a
component. See the discussion of __pascal function pointers in
Chapter 7, “Communication with Pascal,” for an example of this kind
of representation.

Using a —_foreign function pointer in C
Ordinarily, the programmer passes a routine descriptor to a C
function so that the routine can be called from C. Because the C
compiler does not know the format of such descriptors, it cannot
determine the location of the routine to call. Therefore, the
information built by the compiler about the call (and passed to your
Xform-routine and Comm-routine) must contain a pointer to the
—foreign function pointer rather than the location of the routine
to call. The high-order bit should be set in the address to indicate that
this is a call using a function pointer.

Your Comm-routine must check for this case before calling a routine
in your language. If the function pointer bit is set, the Comm-routine

218 Chapter 16

must locate the called routine’s actual entry point, based on the
format of routine descriptors in your language. Such indirect calls
may require additional actions not needed for ordinary calls. For
instance, PL/I requires you to load register 5 with data from an
ENTRY variable before calling the routine it references.

Passing function pointers from C to your language

Your Xform-routine is primarily responsible for passing function
pointers from C to your language. When the compiler processes a call
to a __foreign routine where an argument is a function or function
pointer, it generates a token describing the type of value being passed.
Your Xform-routine needs to process each case differently.

O The token tag TYP_CFUNC indicates a C function name or C
function pointer was passed. The value following the token is the
function pointer value, which addresses an 8-byte area containing
the physical address of the function and its pseudoregister vector
(PRV) address. (If a function name is passed, the compiler promotes
it to a function pointer.) To support passing this type, you have to
transform the C function pointer format into your language’s
routine descriptor format. If your language’s format includes only
the routine address, you have to discard the second word of the C
function descriptor (the PRV address) and, therefore, will be unable
to support calls between load modules. Note that some support for
C function pointers must also be present in your Comm-routine to
support calls between load modules, as described in the next
section.

O The token tag TYP_FFUNC indicates a __foreign function pointer
was passed. The word after the token is the address (not the value)
of the fullword function pointer. In most cases, your Xform-routine
simply copies either the address or the value of the pointer to its
outgoing argument list. Which one you choose depends on your
language’s calling conventions.

0 The token tag TYP_AFUNC indicates that an __asm or __foreign
routine name or an —_asm function pointer was passed. The word
after the token is a pointer to a fullword containing the physical
address of the routine. Your X-routine must build a routine
descriptor in your language’s format for an argument of this sort.

Calling a C function pointer from your language

In addition to the Xform-routine support described above, you also
need to consider calls via C function pointers in your Comm-routine.
Recall that when you pass a C function pointer to a __foreign
routine, the Xform-routine passes a routine descriptor in your
language’s format, including the location of the C function. When a C
function is called from C using a function pointer, one of the required
actions is to replace the current PRV address (in the CRABPRV field
of the C Run-time Anchor Block) with the PRV for the called routine,
and to restore it after the called routine returns. For you to support
calls to C functions in another load module, your Comm-routine must
do the same thing.

For the Comm-routine to switch PRVs, the PRV address must be
available. This means two things. First, the Xform-routine must save
the PRV address somewhere in the descriptor it constructs. Then,
your Comm-routine must locate this information in order to update

CFMWK and
DCFMWK
Considerations

Error Handling and
the C Run-Time
Option =multitask

Implementing ILC 219

the CRAB. How to locate the information depends very much on your
language’s linkage conventions.

An example is the conversion of C function pointers to PL/I ENTRY
variables in the SAS/C PL/I interface. A PL/I ENTRY variable
contains two words. When the Xform-routine converts a function
pointer to an entry variable, it places the PRV address in the second
word. When PL/I calls the ENTRY variable, it loads the second word
into register 5. The PL/I Comm-routine can locate the register 5 value
from the previous save area and use it to update the PRV address in
the CRAB. '

Note that you need to provide users of your language with
information on how to call the CFMWK and DCFMWK routines. These
routines expect a call-by-reference argument list. The first two
arguments to CFMWK must be in either fixed-length or varying-length
string format. (That is, they must be an array of characters, possibly
preceded by a halfword prefix containing the array size.) If varying-
length string format is used, note that the string length must be less
than 256 because CFMWK distinguishes the two formats by checking
for a zero byte at the start of the string. Most languages allow you
simply to call CFMWK and DCFMWK in the natural way and to pass
string literals as arguments.

If this is not the case, you will need to describe and illustrate the
correct techniques for your language. If this is exceedingly tedious, for
instance, if your language uses an arcane string representation,
another possibility is to write your own front ends for these functions
and document the front ends. In this case, the front ends can do the
work of transforming argument lists from your language’s format to
the format expected by CFMWK and DCFMWK.

When the C run-time option =multitask is used, the C framework
manager uses an expensive technique to assure that a program check
is handled by the program check handler for the proper language.
Under OS, this requires running each language in a separate OS task;
under CMS, the SPIE macro is used at every framework switch to
reinstate the current framework’s program check handling.

When =multitask is not specified, a more efficient technique is
used based on assumptions of normal use of the (E)SPIE and
(E)STAE macros by the other languages’ run-time libraries. (Note that
under CMS, the use of ABNEXIT by the other language is not relevant
due to convenient aspects of the definition of ABNEXIT.) If these
assumptions are not valid for your language, you must tell your users
to use the =multitask option, at least if accuracy of error-handling
is a requirement.

When =multitask is not used, the C library assumes the
following:

O The other language’s library issues any (E)SPIE or (E)STAE macro
it requires when the language’s framework is created.

O The other language does not issue (E)SPIE or (E)STAE during later
processing, except as the result of handling a program check or
ABEND.

O The other language’s library does not overlay or replace any
(E)STAE exit defined by its caller.

Note that it is possible that your language might violate these
restrictions only under certain well-defined circumstances. For

220 Chapter 16

important items to
Document

instance, Pascal/VS violates these conditions only when the Pascal/VS
debugger is used. In this case, you can document the need for
=multitask as a restriction of the specific feature or features,
rather than of the entire language.

Documenting Your Interface

The documentation for your user-supported language interface is at
least as important as the code. No one will be able to use your
interface without careful, comprehensive documentation. Chapter 14
provides only an overview of using a user-supported language; your
documentation must provide the details.

In preparing your documentation, look over Chapters 4 through 7
of this book, which will prove helpful in suggesting topics and
organization. Also look at Chapter 14 to see how your documentation
will be used. Be sure to include frequent examples. Note that, if
possible, you should use the same terminology as this book so that
users can use both sets of documentation together without becoming
confused.

The list below suggests numerous issues that should be covered in
your documentation. By necessity, the list is very general and will
probably not include all the necessary items for your language. A good
way to evaluate your documentation is to use it, without reference to
any source code, to write a modest multilanguage application. By
taking on the user role in this fashion, you can discover several items
that did not occur to you while you were developing the interface.

O both the framework name and ILCLINK name of your language.

O what versions of your language are supported, and any differences
between versions.

O how to call CFMWK and DCFMWK to create and delete the C
framework from your language.

O whether or not your language supports passing run-time options
from C.

O whether unexpected termination of your language’s framework can
be handled successfully.

O whether or not the C run-time option =multitask is required,
and under what circumstances.

O what data types are equivalent, both for calls from your language to
C and from C to your language.

O any special alignment rules for sharing structures between your
language and C.

O what data types may be returned from your language to C, and
from C to your language.

O any unusual calling conventions that users need to be aware of to
pass arguments correctly.

O what data type conversion macros may be used in calls to your
language, and directions for their use.

O any restrictions on naming or sharing external variables.

0 whether or not function pointers and routine descriptors may be
passed between your language and C.

O the rules for defining the entry point of a program whose main
routine is in your language.

Implementing ILC 221

O any restrictions on the use of ILCLINK with your language. (For
instance, if your language implementation uses pseudoregisters, you
may need to require or recommend the use of CLINK to avoid
combining your language’s pseudoregister vector with C’s.)

0O any special error-handling requirements or restrictions.

O any features of your language that cannot be used in multilanguage
applications.

O any special requirements for using your language’s debugger in a
multilanguage program.

222

223

Jj Part 3
Appendices

Appendices 1 ILC Library Diagnostic Messages
2 ILCLINK Diagnostic Messages

224

LSCXO033

LSCX035

LSCXO051

225

Appendix 1
ILC Library Diagnostic
Messages

225 Introduction

Introduction

Library messages are classified as ERRORs, WARNINGs, and NOTEs.
An ERROR message is associated with a condition that forces program
termination, usually with an ABEND. A WARNING message describes
a condition that permits program execution to continue, where the
routine that detected the condition returns an error indication to its
caller. (Most library messages are WARNINGs.) A NOTE describes a
condition that permits program execution to continue and is not
communicated to the caller of the routine that detected the condition.

The library messages generated by ILC support and their severity
levels and meanings are as follows. (Terms shown in angle brackets in
the messages are replaced by applicable information when the
message is issued.)

Internal error in interlanguage communication.
Error Level: ERROR

This message indicates an internal library error. Please call the
Technical Support Department at SAS Institute.

Fatal interlanguage communication usage error.
Error Level: ERROR

This message is issued during processing of a library user 1235
ABEND, which is issued for various unrecoverable usage errors. It
should always be accompanied by another message describing the
nature of the error.

ABEND < code > in <language > .
Error Level: ERROR

This message is sent when an ABEND occurs in a language other than
C to identify the ABEND code and the language. Some languages, such
as FORTRAN, modify the ABEND code during their own processing,
and the ABEND code printed by C in such a case may be the modified
rather than the original code.

<language> may also be CDEBUG for an ABEND that occurs in
the C debugger.

226 Appendix 1

LSCX052

LSCXO053

LSCX054

LSCXO055

LSCX270

ABEND < code > reinstated as 0C6.
Error Level: ERROR

This message may occur when an 0Cx ABEND occurs in a language
that does not define a handler for this particular ABEND. In this
situation, the C framework manager gets control and determines that
the ABEND should be allowed to proceed. In some cases, it is not
possible for the framework manager to allow the ABEND to proceed
without either changing the ABEND code or the perceived location of
the ABEND. Because changing the location of the ABEND can cause
language diagnostic information to be incorrect, the framework
manager instead changes the ABEND code. More exactly, it loads the
registers at the time of ABEND and branches to an odd address within
a byte of the original ABEND location. Thus, information such as the
number of the line that failed should be correct.

Interlanguage call or return attempted during program termination.
Error Level: ERROR

This message indicates that the framework for another language had
begun to terminate, and then attempted to call (or return to) C. This
can occur only if an interlanguage call or return is attempted after the
use of some language facility that allows program termination to be
intercepted, such as a PL/I FINISH ON-unit.

Internal error in C library interlanguage communication routines.
Error Level: ERROR

This is a SAS/C library error. Please call the Technical Support
Department at SAS Institute.

Invalid inter-language call to C.
Error Level: ERROR

This message is issued when a C function is called from another
language but the C framework is already active. The most likely cause
of this error is a non-C routine that was not declared with a keyword
such as __cobol. In some cases, a misdeclared routine of this sort
may execute successfully; however, if it calls another C function, this
error results. '

The language “ <language > ” is not defined to the C library.
Error Level: WARNING

A call to mkfmwk or CFMWK specified a language that was unknown to
the library. Check the spelling of the language. (For instance, specify
“PLI”, not “PL1".)

The function that failed returns or stores a token value of zero after
this error.

LSCX271

LSCX272

LSCX273

LSCX274

LSCX275

LSCX276

ILC Library Diagnostic Messages 227

C framework initialization failed due to lack of memory.
Error Level: WARNING

A call to CFMWK failed because there was insufficient memory to
initialize the C framework. CFMWK stores a zero token after this error.

Inter-language call failed - target language not defined.
Error Level: ERROR

A call was made to a routine declared with the __foreign keyword,
but more than one user-supported language was active, and no
“language token” was passed to allow the correct language to be
determined.

Unexpected termination of language framework for <language > .
Error Level: ERROR

This message indicates an internal library error. Please call the
Technical Support Department at SAS Institute.

Unsupported control structure used in multi-language program.
Error Level: ERROR

An interlanguage call or return has occurred, but the routine making
the call or return is not consistent with the chain of routines that
were active at the time of the last interlanguage call or return. This
could be caused by a storage overlay. However, it is more likely that
use of a GOTO-like control structure in one language (such as the C
setjmp) has terminated routines in another language. This condition
can usually only be detected at the time of an interlanguage call or
return; therefore, the actual error may have occurred much earlier
than the point at which the message was issued.

Unable to create language framework for <language >.
Error Level: WARNING

The framework for the named language failed to initialize. The other
language’s run-time library should have generated one or more
diagnostics describing the condition that prevented initialization.

mk fmwk returns a zero token to indicate that the framework could not
be initialized.

Argument to dlfmwk is not a valid language token.
Error Level: WARNING

An argument was passed to d1fmwk that is not a valid language token
for any active language. This may be the result of an uninitialized
variable. It can also occur if an attempt is made to delete a framework
more times than it has been created. d1fmwk returns a nonzero error
code to indicate that the call failed.

228 Appendix 1

LSCX277

LCX278

LSCX279

LSCX280

LSCX281

Unable to terminate execution of < language > .
Error Level: WARNING

A call to d1fmwk or DCFMWK failed because the framework could not
be terminated. Usually, the reason for this message is that one or
more routines in the named language were still executing. For
example, this message is generated if a C function called from
FORTRAN uses d1fmwk to attempt to delete the FORTRAN
framework.

A nonzero error code will be stored by d1fmwk or DCFMWK to
reflect the failure.

Inter-language communication not permitted for more than one
coprocess.

Error Level: 'WARNING, ERROR

An attempt was made to create a framework or call a routine in
another language in more than one coprocess. If the error is detected
by mk fmwk, the message is issued as a WARNING, and a zero token
is returned to indicate that the framework could not be created. If the
error is detected during a call to another language, the message is
issued as an ERROR, and a user 1235 ABEND is issued because there
is no way to communicate to the program that the call has failed.

Inter-language call failed - no framework created for <language >.
Error Level: ERROR

An attempt was made to call a routine in another language, but its
framework had not been successfully created. Perhaps a call to

mk fmwk or CFMWK was omitted, or perhaps it failed and the program
neglected to check for failure. In the latter case, a previous message
should describe the reason for the failure. After this message is
printed, the SAS/C library issues a user 1234 ABEND.

Attempt to terminate language frameworks out of order.
Error Level: WARNING

Calls to d1fmwk or DCFMWK were made in an incorrect order. The
language whose framework was created last must always be deleted
first. After this message, d1fmwk or DCFMWK stores a nonzero return
code.

<language > framework terminated unexpectedly - attempting to
halt execution.

Error Level: NOTE

The named language terminated while other frameworks were still
active. There are many possible causes for this message, including the
following:

O A routine in the named language terminated as the result of
executing a termination request, such as a C exit call or a
FORTRAN STOP statement.

LSCX282

LSCX283

LSCX284

ILC Library Diagnostic Messages 229

O The main routine completed execution without successfully deleting
all of the frameworks it created.

O The run-time library for the named language terminated the
framework due to an error detected by it, such as a PL/I
ON-condition.

0 The framework was terminated as the result of debugging. For
instance, the SAS/C debugger’s EXIT command was used.

The SAS/C library responds to this condition by terminating all
frameworks and, thereby, program execution.

Inter-language call or return attempted during program/process
termination.

Error Level: ERROR

This message indicates that the C program had begun to terminate
and then attempted to call (or return to) another language. This can
occur only if an interlanguage call or return is attempted after
blkjmp or atexit is used to intercept program termination.

This message can also occur if an interlanguage call is attempted
during termination of a coprocess, using blkjmp or atcoexit.

Additional errors may occur due to <language>’s premature
termination.

Error Level: ERROR

This message is generated after message LSCX281 if the framework
that terminated unexpectedly is not the framework most recently
created. In this case, the unexpected termination interferes with the
SAS/C framework manager’s error-handling code. This interference is
only temporary in the sense that if termination completes successfully,
there should be no residual effects of the interference. However, if an
error or program check occurs during termination of the other
frameworks, it will probably cause a cascade of errors, with little
reliable information about cause or location.

Since this situation cannot be avoided, this message is issued before
anything else can go wrong because the chances of issuing it after an
error are slim.

Argument <n> to <language > routine is not a supported data
type.

Error Level: NOTE

An argument passed to a non-C routine is of a data type not supported
by the called language. (For instance, a structure was passed to
FORTRAN.) The SAS/C library passes the argument by reference,
unaltered. (If the call is correct, you can inhibit this message by
adding an & or a operator to the argument yourself, thereby passing it
as a pointer.)

230 Appendix 1

LSCX285

LSCX286

LSCX287

LSCX288

LSCX289

Return value from < language > routine is not a supported data
type.

Error Level: NOTE

The declared return value type for a non-C routine called from C is
not a type supported by the called language. (For instance, a PL/I
routine cannot return a structure.) The SAS/C library allows the call
to proceed, but the handling of the return value is unpredictable.

Unable to create framework. Too many frameworks currently active.
Error Level: WARNING

A library table used to contain framework information has filled up,
and no more frameworks can be created. This table is shared by all C
programs in a virtual machine, or under a single OS TCB. The table
contains entries for 20 frameworks. You can normally correct this
condition by running fewer C programs simultaneously in a single
virtual machine or task.

When this condition occurs, mkfmwk or CFMWK stores a zero token
value to indicate the failure.

Calling coprocess terminated unexpectedly - attempting to halt other
languages.

Error Level: NOTE

This message is produced when a coprocess (other than the main
coprocess) that has created frameworks for other languages terminates
without deleting the frameworks. These frameworks are all deleted,
but execution of the C program continues.

<language > framework terminated unexpectedly - attempting to
halt calling coprocess.

Error Level: NOTE

This message is produced when a language whose framework was
created by a C coprocess, other than the main coprocess, terminates
unexpectedly. All other non-C frameworks, and the coprocess that
created the framework, are terminated, but other coprocesses
continue to execute if there are no errors during this termination.

Inter-language call failed due to previous error - errno = < code > .
Error Level: ERROR

This message is produced when an unexpected error occurs during a
call from C to a non-C routine. The previous message will describe
this error more fully. The <code> value in the message is the value
stored in errno by the previous error. Usually, this value will be
ENOMEV, indicating that there was no memory available to perform
the call.

After this message is printed, the library issues a user 1235
ABEND.

Table A2.1
Severity Levels and Return
Codes

LSCI1000

231

Appendix 2
ILCLINK Diagnostic
Messages

231 Introduction

Introduction

ILCLINK diagnostic messages are divided into five severity levels.
Each severity level is associated with a return code. The levels and
their associated return codes are shown in Table A2.1.

Severity Level Return Code
Note 0
Warning 4
Error 8
Severe 12
Internal (ABEND)

A Note usually displays information about expected behavior.
Warning messages indicate an error has occurred that will not affect
ILCLINK’s processing but, nevertheless, should be examined by the
user. An Error or Severe message is produced if ILCLINK encounters a
condition that will not allow processing to continue. Error messages
indicate a problem that is within the user’s control, such as an invalid
control statement. Severe error messages indicate a problem with the
environment, such as an out-of-memory condition. Finally, an Internal
error message (of which LSCIO38 is the only example) indicates that
ILCLINK has failed to process a correct input file. ILCLINK issues a
user ABEND in this situation. ILCLINK will continue processing if no
diagnostics are produced with a severity level greater than Warning.

The rest of this chapter gives the ILCLINK diagnostic messages and
their severity levels, causes, and resolutions. Terms in angle brackets
in the messages are replaced by applicable information when the
message is issued.

Not enough memory to continue.
Error Level: Severe
Systems: All

Explanation: An attempt to allocate memory failed.

Response: Under CMS, increase the size of the virtual machine.
Under TSO and OS-batch, increase the region size.

232 Appendix 2

LSCI001

LSCI002

LSC1003

LSCl1004

LSCI005

Internal error in < function >. Code <nn>.
Error Level: Severe
Systems: All

Explanation: An internal error was detected in the specified
function.

Response: Report the function name and code to the Technical
Support Department at SAS Institute.

Input file name truncated to 8 characters.

Error Level: Warning

Systems: CMS

Explanation: The filename given as the name of the input file
contains more than 8 characters. The name will be truncated to 8
characters.

Response: CMS filenames cannot have more than 8 characters.

Missing input file name.

Error Level: Error

Systems: CMS

Explanation: No input filename was specified on the command line.
Response: Re-invoke ILCLINK with the name of the input file as the
first parameter.

Unknown option < option > ignored.

Error Level: Warning

Systems: All

Explanation: The specified option is not an option. The option may
have been misspelled.

Response: Re-invoke ILCLINK with the correct option name.

Missing right parenthesis.
Error Level: Error

Systems: TSO, OS-batch

Explanation: An option requiring a parenthesized value does not
have the terminating right parenthesis.

Response: Re-invoke ILCLINK with the correct form of the option.

LSCI006

LSCI007

LSCIl008

LSCI009

LSCl010

ILCLINK Diagnostic Messages 233

Unable to open < file>.
Error Level: Error, Warning
Systems: All

Explanation: ILCLINK could not open the specified file. The error
level is Warning if the file is an output file, and Error if the file is the
input file.

Response: Refer to library messages on stderr for more
information about the error.

Invalid parameter < parameter > .

Error Level: Error

Systems: CMS

Explanation: More than one non-option parameter was used.
Response: Re-invoke ILCLINK using the filename of the input file as
the only non-option parameter.

Unable to determine operating system.

Error Level: Severe

Systems: All »
Explanation: ILCLINK cannot determine the operating system.
Response: Contact the Technical Support Department at SAS
Institute.

Expecting < statement-types > statement.

Error Level: Error

Systems: All

Explanation: The input file contains control statements that are not
in the expected order. The message specifies the types of statements
that can occur in the current context.

Response: Correct the statements in the input file.

Incorrect or missing data in statement.
Error Level: Error
Systems: All

Explanation: The statement contains values that are misspelled, in
the wrong order, or otherwise incorrect, or the statement does not
contain an expected value or keyword.

Response: Correct the statements.

234 Appendix 2

LSClOo11

LSCloi12

LSCI013

LSClo14

LSCl015

Only one entry point language may be specified.
Error Level: Error
Systems: All

Explanation: More than one language name was found in the FIRST
statement.

Response: Correct the FIRST statement so that only one language
name is used.

Reading input file.

Error Level: Error

Systems: All

Explanation: An error occurred while reading the input file.
Response: Refer to library messages on stderr for more
information about the error.

Statement longer than <nn > characters.

Error Level: Error

Systems: All

Explanation: A statement in the input file is longer than the
maximum allowed. This can occur if the input file has a logical record
length greater than 255.

Response: Reformat the input file to use only statements less than or
equal to 255 characters.

No PROCESS statements in input file.

Error Level: Error

Systems: All

Explanation: No PROCESS statement was found in the input file. A
PROCESS statement must be used to produce useful results.

Response: Add PROCESS statements as required to link the program.

Only one FIRST statement may be used.
Error Level: Error
Systems: All

Explanation: More than one FIRST statement was found in the input
file. There may be only one FIRST statement.

Response: Remove extra FIRST statements from the input file.

LSCIl016

LSCI017

LSClo18

LSCl0o19

LSCIl020

ILCLINK Diagnostic Messages 235

Writing to <file>.
Error Level: Error
Systems: All

Explanation: An error occurred while writing to the specified output
file.

Response: Refer to library messages on stderr for more
information about the error.

No non-C languages defined.

Error Level: Note

Systems: All

Explanation: No languages other than C were named in any FIRST
or LANGUAGE statement.

Response: None. This message is informatory only.

Unknown PROCESS keyword < keyword > .
Error Level: Error
Systems: All

Explanation: The PROCESS statement keyword is not CLINK, LINK,
LKED, LOAD, or GENMOD. One of these keywords must be used in a
PROCESS statement.

Response: Correct the PROCESS statement.

Opening utility file.

Error Level: Error

Systems: All

Explanation: An error occurred while opening the utility file.
Response: Refer to library messages on stderr for more
information about the error.

Return code from < command > was <nn>.

Error Level: Note, Warning, Error

Systems: All

Explanation: The return code from the specified operating system
command or utility is the value shown in the message.

Response: If the return code is unexpected, consult the appropriate
operating system documentation for the meaning of the return code.
The operating system may have issued other messages, or the library
may have issued a diagnostic message on stderr.

236 Appendix 2

LSClo021

LSCl022

LSCi023

LSCl024

LSCl025

SYSTEM command not issued due to < reason > .
Error Level: Warning
Systems: All

Explanation: Either an error or attention prevented the command in
the SYSTEM statement from completing.

Response: If an error occurred, refer to the library messages on
stderr for more information.

Entry point name longer than 8 characters. Using < name > as the
entry point name.

Error Level: Warning

Systems: All

Explanation: The entry point name specified in a FIRST statement,
linkage editor ENTRY statement, or the RESET option for the LOAD
command is longer than 8 characters.

Response: Shorten the entry point name.

Languages in program are < language-list > .
Error Level: Note
Systems: All

Explanation: The list contains the language names specified in the
FIRST and LANGUAGE statements.

Response: None. This message is informatory only.

Name <library> truncated to eight characters.
Error Level: Warning
Systems: All

Explanation: A library name (a filename under CMS, or a DDname
under OS-batch and TSO) in an AUTOCALL statement is longer than
eight characters. The maximum length of these names is eight.

Response: Correct the AUTOCALL statement.

No more than <nn> TXTLIBs may be GLOBALed.
Error Level: Error
Systems: CMS

Explanation: Prior to VM/SP Release 5, the maximum number of
GLOBALed TXTLIBs is 8. The total number of TXTLIB names found
in the AUTOCALL statement exceeds this number.

Response: Remove TXTLIB names from the AUTOCALL statements.
If the application requires more than 8 TXTLIBs, you must merge
some.

LSCI1026

LSCl027

LSCl028

LSCl029

LSCI030

ILCLINK Diagnostic Messages 237

Echo < command >.
Error Level: Note
Systems: All

Explanation: This message is issued when the ECHO option is in
effect. ILCLINK has issued the specified operating system command.

Response: None. This message is informatory only.

Unknown CLINK option < option>.
Error Level: Error
Systems: All

Explanation: The specified option in a PROCESS CLINK statement is
not a CLINK option. The option may have been misspelled.

Response: Refer to CLINK documentation for a list of options.

Entry point <namel > in <statementl > conflicts with entry point
< name2 > spec via < statement2 > .

Error Level: Error

Systems: All

Explanation: Two conflicting entry point names have been detected.
The name of the entry point may be specified by a FIRST statement, a
linkage editor ENTRY statement, or the RESET option in a PROCESS
LOAD statement.

Response: Check the specified statements and ensure that the entry
point names do not conflict.

You must specify an explicit entry point name for < language >
programs.

Error Level: Warning

Systems: All

Explanation: The FIRST statement specified a default entry point
name and no default can be chosen. An explicit entry point name
must be specified when the FIRST language is COBOL, FORTRAN, or
a user-supported language.

Response: Determine the entry point name and add it to the FIRST
statement.

< DDname > FILEDEF is already in effect.

Error Level: Warning

Systems: CMS

Explanation: A FILEDEF for a TXTLIB named in an AUTOCALL
statement has already been issued. ILCLINK will not reissue the
FILEDEF.

Response: Clear conflicting FILEDEFs before invoking ILCLINK.

238 Appendix 2

LSCIO31

LSCIl032

LSCI033

LSCI034

LSCI035

Concatenated SYSLIB FILEDEFs are not supported by the LKED
command.

Error Level: Warning
Systems: CMS

Explanation: More than one AUTOCALL library name was specified
for a PROCESS LKED statement. As of Release 5 of CMS, the LKED

command does not support concatentated SYSLIB libraries. ILCLINK
will issue the FILEDEFs anyway.

Response: Put all autocalled object code into a single TXTLIB.

Invalid DDname prefix < prefix > specified by FILES option.
Error Level: Warning
Systems: TSO, OS-batch

Explanation: The value specified by the FILES option was greater
than 3 characters long, or the first character was not A-Z, #, $, or @.

Response: Specify a valid DDname prefix with the FILES option.

Dataset is already open.
Error Level: Error
Systems: TSO, OS-batch

Explanation: A data set referred to in the current statement is
already open.

Response: Ensure that all data sets that will be used are closed
before invoking ILCLINK.

Specified DDname not found.

Error Level: Error

Systems: TSO, OS-batch

Explanation: A DDname specified in the current statement has not
been allocated.

Response: Ensure that all DDnames that will be used are allocated
before invoking ILCLINK.

In dynamic allocation. Return code < nn >, reason code <nn>,
information reason <nn>.

Error Level: Severe

Systems: TSO, OS-batch

Explanation: An unexpected error occurred while executing SVC 99
(dynamic allocation).

Response: Report the return code, reason code, and information
reason code to the Technical Support Department at SAS Institute.

LSCI036

LSCI037

LSCI038

LSCI039

LSCI1040

ILCLINK Diagnostic Messages 239

Dynamic allocation request denied by installation. Return code
<nn >, reason code <nn >, information reason <nn>.

Error Level: Severe
Systems: TSO, OS-batch

Explanation: An SVC 99 request for dynamic allocation failed due to
an installation restriction.

Response: Consult a systems programmer at the site for more
information.

JOBLIB, STEPLIB, JOBCAT, or STEPCAT specified on

< statement-type > statement.

Error Level: Error

Systems: TSO, OS-batch

Explanation: One of the above DDnames was used in a statement.

Response: Use another DDname to refer to the data set.

Invalid dynamic allocation parameter list.
Error Level: Internal
Systems: TSO, OS-batch

Explanation: ILCLINK created an invalid SVC 99 parameter list.
ILCLINK will issue a user ABEND.

Response: Report the error, including the traceback, to the Technical
Support Department at SAS Institute.

Required DDname unavailable.

Error Level: Error

Systems: TSO, OS-b_%tch

Explanation: A DDname in the current statement has not been
allocated.

Response: Ensure that the DDnames used in the input file have been
allocated before invoking ILCLINK.

Unable to allocate < dsname > OLD. Allocated to another job or
user.

Error Level: Error

Systems: TSO, OS-batch

Explanation: The specified data set has already been allocated.

Response: Free any conflicting allocation(s) before invoking
ILCLINK.

240 Appendix 2

LSCl042

LSCIl043

LSCl044

LSCl045

LSCIl046

Deconcatenation of DDname < ddname > would result in duplicate
DDnames.

Error Level: Error
Systems: TSO, OS-batch

Explanation: A data set concatenation created by ILCLINK contains a
DDname that has since been allocated.

Response: Use unique DDnames in ALLOCATE commands issued via
the SYSTEM statement.

SYSTEM statement too long to process.

Error Level: Error

Systems: All

Explanation: A command specified in a SYSTEM statement exceeds
the limit of 500 characters.

Response: Reduce the number of characters in the command. This
error is most likely caused by excessive blank space on the command.
SYSTEM statements may not be issued in OS-batch.

Error Level: Warning

Systems: OS-batch

Explanation: ILCLINK will not issue a command in a SYSTEM
statement under OS-batch.

Response: Remove the statement.

GENMOD command too long to issue.
Error Level: Error
Systems: CMS

Explanation: A PROCESS GENMOD statement requires that a
GENMOD command longer than 240 bytes be created. ILCLINK
cannot create commands longer than 240 bytes.

Response: Re-code the PROCESS GENMOD statement. This error is
most likely the result of excessive blank space in the statement.
Cannot determine first CSECT name.

Error Level: Error

Systems: CMS

Explanation: An error occurred while reading the LOAD MAP file.

Response: Refer to library messages for more information about the
error.

ILCLINK Diagnostic Messages 241

LSCI047 < utility> abnormally terminated.
Error Level: Error
Systems: TSO, OS-batch

Explanation: The utility (for example, linker) invoked for the current
process ABENDed.

Response: Refer to diagnostics issued by the utility for more
information.

242

Function Index

__ARRAY, __ARRAY2, __ARRAY3 ... Pass Array Argument to PL/I 66

_BIT Pass Bit Argument to PL/T 67

_SET Pass SET Argument to Pascal 88
_STRARRAY Pass String Array Argument to PL/I 68
_STRING Pass String Argument to FORTRAN 43
_STRING Pass String Argument to PL/I 69
_STRING Pass Fixed-Length String Argument to Pascal
ACFMWK Activate the C Framework 153

CFMWK Create the C Framework 145

DCFMWK Delete the C Framework 149

difmwk Delete the Framework for a Non-C Language
mkfmwk Create the Framework for a Non-C Language
pdset Assign Double Value to Packed Decimal 156
pdvalt Convert Packed Decimal to Double 158

QCFMWK Quiesce the C Framework 150

89

144
142

243

244

Index

A

ABENDs 127-134

finding point of 128-129

retrying 210-211

0Cx 129, 131

0C1 129

0C4 129, 209

0C6 129

0C7 130

0C7 158

1233 128

1234 128, 131, 188

1235 128, 192
ABNEXIT macro 210, 219
abnormal termination of execution frameworks 16
ACFMWK routine 139

activating the C framework 153-154

arguments 153

declaring in PL/I 133

example of calling from C 151

example of calling from PL/I 152
adding

language to supported language table 182-183

your own data type conversion macros 196-197
addresses

found by Locate-routine 183

of entry point, C function 201

of JLCP area 204

of original save area 204

of prolog code 212

of return value 198

of routine to be called, stored in cargs 193
addressing mode considerations 136
advanced topics 135-139

coprocesses in a multilanguage program 137-138

dynamic loading 135-136

MVS/XA addressing mode considerations 136

signal/condition handling 137

simultaneous multilanguage programs 139

using more than two languages 138
advantages of ILC 5
after flag

L$CILCL 192

set by Xform-routine 192
aggregate data

sharing in Pascal-C programs 78
alignment

of PACKED data 77

of records in COBOL 54
allocating DDnames

for ILCLINK under CMS 121-122

for ILCLINK under OS-batch 122-123

for ILCLINK under TSO 119-121
AMODE 136
applications, more than two languages 138
ARGS operand of CCOMM macro 205
argument

of CFMWK routine, first 164

245

of CFMWK routine, third 164
of mkfmwk function, first 164
passed from C, first 165
argument lists
CFMWK routine 164
declaring 165
ILCP 206
L$CILCL 177
argument mismatches and debugging 132-130
argument promotion 31
definition 20
argument replacement, data type conversion macros
196-197
argument transformation routine 189-200
See also Xform-routine
argument types
calls from C to Pascal 83-84
calls from C to PL/I 62
calls from Pascal to C 78-79
calls from PL/Ito C 59
for calls from C to COBOL 53-54
for calls from C to FORTRAN 42
for calls from COBOL to C 51
for calls from FORTRAN to C 39
arguments
CONST 77
definition 3
function pointers 32
overview 25
passing from C to COBOL 53-55
passing from C to FORTRAN 41-44
passing from C to other languages 27-28
passing from C to Pascal 83-86
passing from C to PL/I 62-65
passing from COBOL to C 50-52
passing from FORTRAN to C 39-40
passing from Pascal to C 77-81
passing from PL/I to C 59-60
passing in ILC 6-7
problems with passing 6
VAR 77
arguments of CFMWK routine 219
_ARRAY macro 195, 216
array arguments
defining to PL/I 66
passing from C to FORTRAN 43
passing from C to Pascal 84
passing from C to PL/I 64
passing from FORTRAN to C 40
passing from Pascal to C 79
passing from PL/Ito C 60
array data types 23
—ARRAY macro 7, 27, 30, 43, 62, 64, 66
output 197
ARRAY OF CHAR values
returning from C to Pascal 81
returning from Pascal to C 87
arrays
multidimensional in FORTRAN-C programs 47-48

246 Index

of string structures, supporting 197
passing 216
returning 211
TYP_DIM 195
TYP_ELEM 195
—ARRAY2 macro 64, 66
output 197
—ARRAY3 macro 64, 66
output 197
assembler function pointer data, TYP_AFUNC 194
assembler language
communication with C 5
assembler language
keyword 32
asynchronous events 137
AT compiler option 33
attention interrupts 72
ATTENTION ON-unit, PL/1 137
AUTOCALL control statement 108-109
example 109
automatic variables, global 91

BASE operand of ILCENTRY macro 208
BEGIN call
CRABFMT operand of ILCENTRY macro 208
begin message in ILCP 203
Begin-routine 175, 183, 184, 200-201, 204
and ILCLINK 201
as entry point to Comm-routine 200
called by Main-routine 185
error handling considerations 209-211
format of name 200
implementation 200
language 200
message types 203
purpose 200
QUIT message 179
receiving CRAB address 200
sample 213-214
separate code from Comm-routine 201
terminating 200
TYPE operand of ILCENTRY macro 208
variations on name format 201
work area size and mapping 207
beginning framework execution routine 200-201
See also Begin-routine
BEGN operand, see also Begin-routine
CCOMM macro 204
bit arguments
passing from C to PL/I 64
bit data types 21-22
—BIT macro 64, 65, 67, 195
example 67
implementation 197
bit strings, TYP_BIT 195
BIT(n) 65
BIT(n) arguments
defining to PL/I 67
passing from PL/Ito C 60
returning from PL/Ito C 65
boolean data types 21
=btrace run-time option 132

builtin compiler operators
—_sizelem 197
BYtealign compiler option 33, 54, 77, 85, 134

C

C calling conventions 25
C calling sequence, example 203
C compiler options 33-34

AT 33
BYtealign 33, 54, 77, 85, 134
DOllars 30

example, NORENT 47
example, VString 34
INDep 7, 13, 33-34, 39, 50, 59, 77, 129, 165, 186
NORENT 34, 46, 91, 132
VString 34, 64, 85, 89, 90, 134, 194, 195
C control routine, L§CICTL 170, 175, 176
C framework
creating 164, 175
deleting 178
normal termination 178
unexpected termination 180
C functions
declaring in Pascal 77
declaring in PL/I 59, 60
entry point address 201
C functions that return a value 165
C Run-time Anchor Block (CRAB)
See CRAB address
C varying-length string macros 159-160
call by reference 7, 25-26, 30, 165, 216
argument list, CRABFMT 208
definition 3
example, comparing with call by value 26
call by value 7, 25, 165, 216
definition 3
example, comparing with call by reference 26
CALL message 176, 178, 188, 190, 198
call message in ILCP 203
CALL operand
CCOMM macro 204
specific operands for 205
call-by-reference operator 30-31
example 195-196
calling a user-supported language from C 165-166
calling ACFMWK
from C, example 151
from PL/I, example 152
calling another language from C
overview 8
PL/I, example 8-9
calling C
from a non-C routine 176
from a user-supported language 164-165
from another language, FORTRAN example 7-8
from another language, overview 7
from COBOL, example 50-51, 52-53
from FORTRAN, example 39, 41
from Pascal, example 77, 81-82
from PL/I, example 59, 61
calling C function pointers from your language 218
calling C functions that return a value
from PL/I 73-74

calling COBOL from C 53-54
calling conventions
C 25
Pascal 26
calling FORTRAN from C 41
example 45-46
calling non-C routines from C 177
calling Pascal from C 83
example 82, 89-90
calling PL/T from C 62
calling QCFMWK
from C, example 151
from PL/I, example 152
calling ___foreign routines 206, 216-218
cargs 192, 198
elements of argument list 193-195
end of list token 193
first byte 192
language token 193
macro tokens 193-195
return token 193
tag values 193-195
token example 195-196
token id 192
value tokens 193-195
CCOMBEGN 203, 204
CCOMCALL 203-207
CCOMM macro 170, 175, 200-201, 207, 212
and ILCPs 202
operands 204-205
purpose 203
QUIT message 202
register 15 value upon completion 205
RET function 207
RET message 203
syntax 203
CCOMQUIT 203, 205
CCOMRET 203-206
CCONS 203
CFMWK routine 6, 7, 13, 15-16, 50, 73, 110-111, 164,
175, 182
and ILCLINK 110-111
arguments 145-146, 164, 219
COBOL example 147
creating the C framework 145-148
declaring in PL/I 133
examples 146-148
FORTRAN example 147
Pascal example 148
PL/I example 147-148
restrictions on 13
with user-supported languages 219
CHAR(n) arguments
defining to PL/I 69
passing from PL/I to C 60
returning from PL/I 65
CHAR(n) VARYING arguments
passing from PL/Ito C 60
returning 65
character arguments
passing from C to COBOL 53-54
passing from C to PL/I 42-43
CHARACTER arguments
passing from C to FORTRAN 63
passing from FORTRAN to C 39

Index 247

character data types 22
character literal arguments
passing from C to Pascal 84
character literals
definition 20
passing 132
character values
returning 212
CHARACTER values
returning to C from FORTRAN 44
returning to FORTRAN from C 40
Checkout Compiler
PL/T 73
SIZE option 134
CLINK preprocessor, and PL/1 134
CMS DDnames
allocating for ILCLINK 121-122
for ILCLINK 109
CMS ILCLINK example 119, 121
CMS object module for L§IMIXD 182
COBOL
CFMWK and DCFMWK routines 147
communication with 49-56
compiler options 56
data types 50
keyword 53
COBOL and ILC
data types 50
framework considerations 49-50
passing data 50-52, 53-54
returning data 52, 55
versions supported 49
COBOL data types
COMPUTATIONAL 133
DISPLAY 133
COBOL-C corresponding data types 50
COBOL-C programs 130
debugging 133
Comm-routine 170, 176, 183, 201-202, 204
address 188
and outret 192, 198
and structures 212
and the Prep-routine 188
and unions 212
Begin-routine as entry point 200
CALL message 176, 178, 188
calls, Quit-routine 185
entry point format 210
error handling considerations 209-211
format of name 201
implementation 201
language 201
linkage conventions 201
memory management 207-208
message types 203
passing __foreign function pointers 217-218
processing calls 212-213
QUIT message 180
recursion 202, 207
RET message 177, 178, 188, 190, 198
return value processing 198-199, 211-213
returning to its caller 206
returning values in registers 211, 213
sample 213-214
saving registers 201, 207

248 Index

scalar values 212
separate code from Begin-routine 201
standing in for called C functions 202
supporting calls between load modules 218
switching PRVs 218
terminating 202
tracebacks 210
TYPE operand of ILCENTRY macro 208
work area size and mapping 207
COMMON blocks 23, 29, 46-47, 185
cominunicating with the C process 202-214
communication with other languages 19-36
COBOL 49-56
FORTRAN 37-48
Pascal 75-93
PL/T 57-74
user-supported 163
COMP-3 arguments
passing from COBOL to C 51
COMP-3 data 155
compatible data types, defining 214-215
compiler operator, __sizelem 197
compiling with INDep option 129
COMPLEX values
returning to C from FORTRAN 44
returning to FORTRAN from C 40
components of execution frameworks 12
CONST arguments 77
CONST STRING arguments 85
constants
passing in FORTRAN-C programs 132
passing in PL/I-C programs 133
control block location routine 183-184
See also Locate-routine
control blocks 12
locating framework 183
control flow of ILC 174-182
control routine, L§CICTL 170, 175, 176
control statements
format 101
order 101-102
controlling interlanguage calls routine 201-202
See also Comm-routine
converting
double data to packed decimal 156-157
packed decimal data to double 158
coprocesses in a multilanguage program 137-139
COPY code member CCONS 203
corresponding data types 38-39
COBOL-C 50
FORTRAN-C 38
Pascal-C 76
PL/I-C 58
cost of using more than two languages 138
CPROLOG DSECT 212
CPROTYPE flags 212
CRAB 176
CRAB address 183, 184
CRABREG operand of ILCENTRY macro 208
passed by Main-routine 185
passing to Begin-routine 200
register containing 209
CRAB address word
and non-reentrant programs 184
and reentrant programs 184

nonzero 188
requirements 183
selecting 183
CRAB operand of CCOMM macro 204

CRABDWEK field of CRAB address word 188, 201, 207

CRABFMT operand of ILCENTRY macro 208
CRABPRV field 218
CRABREG operand
ILCENTRY macro 208
ILCEXIT macro 209
creating frameworks

C 164, 175

FORTRAN, more than once 136
from C 12-13

from other languages 13

non-C 174

user-supported language 164
cret 192, 198
CSECT as the CRAB address word 184

data formats 215
definition 3, 20

data set attributes
ILCLINK 124-125

data sharing 25-29
considerations 216
descriptors 216
example, PL/I-C programs 71
external symbols 34
external variables 34
in FORTRAN, external 46-47
Pascal, external 91
PL/I, external 71

data type conversion macros 4, 8, 44-45, 65-68, 87-89

adding your own 196-197
argument replacement 196-197
—ARRAY 27, 30, 43, 62, 64, 66, 195, 197, 216
_ARRAY2 64, 66, 197
—ARRAY3 64, 66, 197

-BIT 64, 65, 67, 195, 197
macro tokens 193

passing arguments 165

PL/I example 70

_SET 83, 85, 88, 195
_STRARRAY 64, 197

—STRING 27, 30, 34, 43, 45, 53, 54, 64, 69, 83, 85,

89, 130, 133, 165, 194, 215

data type conversion macros

_ARRAY 195
data types 20-24

ambiguous 211

array 23

bit 21-22

boolean 21

character 22

COBOL 50

defining equivalent 214-215

definition 4, 20

FORTRAN 38

in ILC 6

incompatible 129-130

miscellaneous 24

numeric 21
Pascal 76
PL/I 58
pointer 24
problems with 6
string 22
structure 23-24
data, aggregate 78
DCFMWK routine 6, 7, 15-16, 178
arguments 149
COBOL example 147
declaring in PL/T 133
deleting the C framework 149
examples 146-148
FORTRAN example 147
Pascal example 148
PL/1 example 147-148
with user-supported languages 219
DD statements
ILCLINK 116-117
DDnames
allocating for ILCLINK under CMS 121-122
allocating for ILCLINK under OS-batch 122-123
allocating for ILCLINK under TSO 120-121
for ILCLINK under TSO and OS-batch 109
debugger commands
MONITOR 131
STORAGE 132
debugging 127-134
argument mismatches 130
COBOL-C programs 133
entry points 130
FORTRAN-C programs 132
function return type mismatches 130
incompatible data types 129
incorrect file output 131
incorrect results 131
INDep compiler option 129
more than one main routine 131
storage overlays 131, 132
debugging
PL/I-C programs 73
with system dumps 13
declaring argument lists 165
declaring C functions
in Pascal 77
PL/I 59, 60
declaring COBOL routines in C 53
declaring FORTRAN routines in C 41
declaring routines in C
Pascal 77, 83
PL/T 62
declaring routines in other languages 29-30
defining
array dimensions with TYP_DIM 195
array elements with TYP_ELEM 195
equivalent data types 214-215
defining arguments to PL/I
BIT(n) 67
CHAR(*) 69
one-dimensional array 66
string array 68
three-dimensional array 66
two-dimensional array 66

Index 249

deleting frameworks
abnormal termination 15, 16
C 178
effects of 15, 16
non-C 179
order of 138
planned termination 15
descriptors 20
PL/1 26-27, 216
diagnostics
ILCENTRY macro 208
ILCEXIT macro 208
difmwk function 8, 15, 38, 179, 200, 206
deleting non-C framework 144
example 143
token 164
DMSLIO202W
diagnostic message 111
documenting interfaces 163, 168, 220-221
DOllars compiler option 30
double data, converting to packed decimal 156-157
double value, returning 212
DSA operand of ILCENTRY macro 208
dummy calls to mkfmwk function 166
dynamic loading
FORTRAN 136
in multilanguage programs 135-136
languages supported 135
when to use 135
dynamically allocated memory
CRAB address word 184
DSA operand 208
for ILCPs 207
ILCENTRY macro 208
ILCEXIT macro 208
obtaining 207
releasing 185

efficient code, loops 15
end of list token, in cargs 193
entry point
See also framework
address of a C function 201
format for Comm-routine 210
incorrect 130
of C function, specifying with CALL = 205
of L§CICTL 177
user-supported languages 166
ENTRY statement 111
environment, definition 4
equivalent data types, defining 214-215
err argument
ACFMWK routine 153
DCFMWK routine 149
QCFMWK routine 150
ERRFILE run-time option 134
errno 192
error handling 12, 15, 16-17
FORTRAN-C programs 46
PL/I-C programs 71
error handling considerations
Begin-routine 209-211
Comm-routine 209-211

250 Index

ESTAE macro 210, 219
examples
_BIT macro 67
C calling sequence 203
call by value and call by reference 26
calling __foreign routines 195-196
calling C from COBOL 52-53
calling C from FORTRAN 7-8, 41
calling C from Pascal 81
calling C from PL/I 61-62
calling FORTRAN from C 45
calling Pascal from C 82, 89-90.
calling PL/I from C 8-9
calling QCFMWK and ACFMWK from C 151
calling QCFMWK and ACFMWK from PL/I 152
cargs token 195-196
CFMWK and DCFMWK 146-148
CFMWK and DCFMWK, COBOL 147
CFMWK and DCFMWK, FORTRAN 147
CFMWK and DCFMWK, Pascal 148
CFMWK and DCFMWK, PL/I 147-148
data sharing, PL/I-C 71
data type conversion macros and PL/I 70
function pointer implementation 219
ILCLINK AUTOCALL control statement 108-109
ILCLINK FIRST control statement 102-103
ILCLINK input file 36
ILCLINK JCL 116, 122
ILCLINK LANGUAGE control statement 103-104

ILCLINK PROCESS control statement 104, 105, 106,

107, 108

ILCLINK SYSTEM control statement 109
mkfmwk and difmwk 143
multidimensional arrays in FORTRAN-C 48
multilanguage save area chains 14
NORENT C compiler option 47
passing a SET to a C function 92
passing FUNCTION/PROCEDURE arguments 80, 86
passing SET arguments from Pascal to C 79-81
passing string arguments from C to FORTRAN 43
pdset macro 156-157
pdval macro 158
process communication 170-171
returning data from COBOL to C 55
returning data from Pascal to C 86-87
routine names 30
_SET macro 88
_STRARRAY macro 68
token list passed to Xform-routine 195-196
using ILCLINK with FORTRAN and C 9
using the VString compiler option 34
using varying-length string macros in C 160
Xform-routine token list 195-196

execution framework
See also framework
accessibility to program 6
and incompatible compilers 13
C 164
coexistence 13
components of 5, 12
creating 5, 7, 8, 12
creating FORTRAN’s more than once 136
creating from C 12-13
creating from other languages 13
definition 4

deleting 5, 7, 8, 15, 16

function of 5

manipulation routines 141-154

switching 4

user-supported languages 141, 164-165
exit function 133, 180, 182
expressions, passing in PL/I-C programs 133
external data sharing

C 28

FORTRAN 29

FORTRAN-C 46-47

Pascal 29

Pascal-C 91

PL/T 29

PL/I-C 71
EXTERNAL directive 92
external symbols 34, 216

definition 20
external variables

and reentrant code 137

definition 20, 216

names, length 34, 47, 71, 91

F

file descriptors 12
file output, incorrect 131-132
file sharing
formatted I/O 29
unformatted I/0 29
FILE variables, sharing 24
files, object code 168
finding point of ABEND 128
first argument
CFMWK routine 164, 219
mkfmwk function 164
passed from C 165
first byte of cargs token 192
FIRST control statement 102, 130, 166
examples 103
FIXED DECIMAL arguments
passing from PL/Ito C 59
FIXED DECIMAL data 155
fixed-length strings, TYP_STRING 194
flags, CPROTYPE 212
floating-point data, TYP_FLT 194
floating-point values, returning 212
flow of control in ILC 174-182
format
of Framework-routine name 184
of LANGDEF macro operands 182
of Locate-routine name 183
formatted I/O
definition 20
file sharing 29
<fortmath.h> header file 47, 133
FORTRAN
CFMWK and DCFMWK routines 147
communication with 37-48
corresponding C data types 38-39
data types 38
EXIT routine 47
framework, creating more than once 136
keyword 41

reentrancy 137
STOP statement 180
FORTRAN and ILC
data types 38
error handling 46
external data sharing 46
framework considerations 38
linking 47
passing data 39, 41-42
returning data 40, 44
versions supported 38
FORTRAN-C programs
debugging 132-133
framework 4
Sece also execution framework
coexistence 13
components 5, 12
control blocks, locating 183
creating the C 175
creating the non-C 174
creation 12
manipulation routines 141-154
name length 182
normal termination of C 178
normal termination of non-C 179
switching 4
termination 15-16
unexpected termination of C 180
unexpected termination of non-C 181
framework considerations
COBOL 49-50
FORTRAN 38
framework generation routine 184-185
See also Framework-routine
framework language name 163, 182
length 168
storage 168
framework manager 170, 175, 178-180, 182, 219
Framework-routine 175, 179, 184-185, 200
format of name 184
implementation 184
language 184
purpose 184
register 1 184
sample FORTRAN 185
termination of the non-C framework 185
function arguments in C 7
function calls in C 7
function code of ILCP 203
function pointer arguments 32
passing from C to FORTRAN 44
passing from C to PL/I 65
function pointer data, TYPE_AFUNC 194
function pointers 193
calling C from your language 218-219
declaring in another language 31-32
example of implementation 219
implementation 216-219
inC 7
passing from C to your language 218
__foreign 217
function prototype, definition 20
function return type mismatches 130
FUNCTION/PROCEDURE arguments
example of passing 81

Index 251

passing from C to Pascal 86
passing from Pascal to C 80
function, definition 4
FUNCTION, definition 4
functions that return a value 165
FUNCTIONS that return a value 166

G

generic language name 182
format 168
length 168, 182
global automatic variables 91
GOTO statements 72, 134
in PL/T 17
out-of-block 128

header files
<fortmath.h> 47
<ile.h> 43, 194
<ilctok.h> 184, 185, 192
<stdlib.h> 47
high-level language, definition 4
HLL function pointer 31-32
definition 4

1/0
formatted 20
unformatted 20
IBM 370 standard linkage 165, 182, 186
definition 20
IBMO0O05I
diagnostic message 110
ILC
advantages of 5
argument promotions 31
control flow 174-182
framework manager 170
framework manipulation routines 141-154
languages supported 5
messages, receiving under TSO 128-129, 132
model 170
process communication 170
restrictions on return value processing 197
user ABENDs 127-128
ILC_flags argument, CFMWK routine 145-146
<ile.h> header file 43, 194
ILCENTRY macro 208, 210
operands 208
overflow of stack 209
save area 210
syntax 208
where to use 208
ILCENTRY-used operand of LANGDEF macro 183
ILCEXIT macro 208
syntax 209
where to use 209

252 Index

ILCLINK 9, 35-36 i incorrect results, debugging 131
and user-supported languages 166 INDep compiler option 7, 13, 33-34, 39, 50, 59, 77,
AUTOCALL control statement 100, 108-109 129, 165, 186
cataloged procedure 115-116 initialization/termination routine, LSCMAIN 180
CLINK process 104-105, 110 input ILCP 203
CLIST 113-114 integer data, TYP_INT 193
CMS usage 115 integral values, returning 212
comment statements 102 interfacing with assembler 13

control statements 101-110 interlanguage communication
data set attributes 124-125 See also ILC

DDnames under TSO and OS-batch 109 native to Pascal 91

default data set attributes 124-125 interlanguage communication packets
entry point selection 102-103, 111 See ILCP

entry points of user-supported languages 166
examples 117-123

FIRST statement 102-103, 130

GENMOD process 108

input file 96

JCL, examples 116, 122

language codes 97-98

language name 163, 166, 168

interpreting compiler’s token list 192-197

interpreting SET data in C 92-93-

interrupts 137

invalid arguments of ___foreign functions, TYP_INV 195
IUCV interrupt 137

LANGUAGE statement 103-104 J

language, options 98 - .

LINK process 106107 joint handling of program checks
Pascal-C 91

listing file 97
LKED process 106-107
LLOAD process 107-108

options 97, 113 K
OS-batch usage 115
output files 96, 112-113 keywords 8, 13, 29, 32
PROCESS statement 104 asser'nb'ler 27, 32
processes 98, 101 specifying 27, 29
required DD statements 116-117 user—:eupported languages 29
restrictions 110 __alignmem 33, 77
return codes 101, 110 __asm 32
TSO usage 113 __cobol 53
using with FORTRAN and C, example 9 _foreign 29, 165, 166, 177
with PL/I 110 __fortran 41

1LCP __noalignmem 33, 52, 54, 77, 85
area address 204 __pascal 83
argument list 206 —pli 62

function code 203
length 202

levels 202 L
return value area 207
<ilctok.h> header file 184, 185, 192 L$CICMN function 13, 16, 146, 175, 178
implementing control flow of Prep-routine 188-189 L$CICTL 170, 175, 211, 212
implementing interfaces and unsuccessful Xform-routine 192
background 167 CALL message 188
data sharing 216 CALL message, receiving 176
documentation 168, 220-221 entry point 177
equivalent data types 214-215 QUIT message 178, 182
function pointers 216-219 L$CILCL routine 13, 177, 189
knowledge required 173 L$CINCE routine 188
language names 168 L$CIQIT routine 181, 182
prerequisites 163 L$ICICL
routine names 168 and return value processing 198
support routines 169, 183-214 L$IFORF 185
supported language table 182-183 L$IFORM routine 38
tasks 167-168, 174 L$IFO1Q routine 38
INCLUDE statement, and Begin-routine 201 L$IMIXD 182
incompatible argument types 129 object module 182
incompatible compilers and execution frameworks 13 L$IPASM routine 76, 92
incorrect entry points 130 L$IPASQ routine 16, 76

incorrect file output 131-132 L$IPLIM procedure 13

L$UPREP routine 13, 34, 35, 176, 201
and more than two languages 138
as entry point to Prep-routine 186
with more than two languages 176

LANGDEF macro 182
ILCENTRY-used operand 183
operand format 182

language argument, CFMWK routine 145

LANGUAGE control statement 103-104, 166
examples 104

language keywords 8, 13, 27, 29, 32, 41, 53, 62, 83
specifying 27, 29
__foreign 165, 166, 177

language library routines 12

language names 168
framework 163
ILCLINK 163, 166

language number 167
range 183
restrictions 183

language token
failing to pass 166
in cargs 193
passed from C 165
passing to a __foreign routine 166

language traceback 129

languages
supporting two versions 168
user-supported 141
using more than two 138

last two bytes of cargs token 192

length of external variable names 47, 71, 91

library storage overlays, detecting 127

linkage conventions
Comm-routine 201
Prep-routine 188

linkage, standard 20

linking considerations
FORTRAN-C 47
general 35-36
PL/I-C 72
pseudoregister removal 72

linking multilanguage programs 9

Locate-routine 181, 183-184
addresses found by 183
format of name 183
implementation 183
language 183
register 1 183
registers 2 through 13 183
returning zero as save area address 182

locating framework control blocks 183

longjmp command 72, 128, 132
and error handling 17

loops 15

L.SC1042
diagnostic message 112

LSCL603
diagnostic message 111

LSCMAIN routine 180

LSCX051 message 128

LSCX052 message 129

Index 253

macro tokens
in cargs 193
token id 193
main language, restrictions on 13
main routine
and multilanguage programs 12-13
definition 11
more than one 131
user-coded 13
Main-routine 175, 179, 184, 185, 200, 206
explicit action 185
format of name 185
implementation 185
language 185
variations on name format 185
mapping structures 133
without padding between fields 33
math functions, linking FORTRAN-C programs 47
memory allocation tables 12
memory overlays, preventing 139
message types
for Begin-routine 203
for Comm-routine 203
messages, receiving under TSO 128, 132
miscellaneous data types 24
mismatching function return types 130
mkfmwk function 8, 12, 15, 38, 50, 73, 163, 174, 182,
184
and VS COBOL IT 142
arguments 142
creating the non-C framework 142-143
dummy call 166
example 143
first argument 164
token 164
MONITOR debugger command 131
more than two languages, using 138
multidimensional arrays in FORTRAN-C programs 47
example 48
multilanguage save area chain, example 13
multilanguage signal/condition handling 137
=multitask run-time option 15
= 17
= 91, 132, 164, 210, 219
failure to use 219
MVS/XA addressing mode considerations 136

names
external variable 71, 91
framework 163, 168
generic 168
ILCLINK 163, 166, 168
language 168
object code files 168
routines 168
naming routines, restrictions 29-30
=nohcsig option 17
=nohtsig option 17
non-C framework
creating 164, 174

254 Index

deleting 179
normal termination 179
unexpected termination 181
creating 164
non-C routines
assembly language 27
COBOIL, 53
FORTRAN 41-42
keywords 8, 13, 29, 32
Pascal 83
PL/1 62
user-supported 29
non-reentrant programs, and CRAB address word 184
non-standard interface, documenting 163
non-standard languages
and ILCLINK 166
creating framework 164
using 163-166
nonpointer arguments
and value tokens 193
passing 27, 165
NORENT compiler option 34, 46, 91, 132
example 47
normal termination
C framework 178
non-C framework 179
numeric data types 21

object code

filenames 168

for support routines, storing 169
obtaining

dynamically allocated memory 207

original register 15 value 201
OFLOW operand of ILCENTRY macro 208
ON-units 71, 72

PL/I 134
ONERROR PROCEDURE 91
operands for CCOMM macro 204-205
operands of LANGDEF macro

format 182

ILCENTRY-used 183
operands of the supported language table 182
operating system, specifying with ILCENTRY macro 208
operators

& 54, 85, 134, 196

@ 54, 85, 134, 196
options argument

CFMWK routine 145

mkfmwk function 142
OPTIONS(ASM) 60, 73, 130, 146, 149, 216

OPTIONS(ASM,INTER) 59, 133
original register 15 value, obtaining 201
original save area 183

address of 204
OS-batch DDnames

allocating for ILCLINK 122-123

for ILCLINK 109
OS-batch ILCLINK example 122
OSA=address operand of CCOMM macro 204
out-of-block GOTO 128

in PL/I 17

outargs 192
output of _ARRAY macros 197
output redirection in PL/I-C programs 72
outret 192, 198, 207, 211
overflow of ILCENTRY stack, OFLOW operand 209
overhead
and using more than two languages 138
saving on 15
overlaying library storage, detecting 127
overlaying storage and debugging 131

PACKED ARRAY OF CHAR, returning from Pascal
toC 87
PACKED ARRAY OF REAL, passing 77
PACKED ARRAY OF RECORDS, passing 77
PACKED ARRAY OF unPACKED RECORDS 77
PACKED data
alignment 77
sharing 77
packed decimal arguments
passing from C to COBOL 54
packed decimal data
converting to double 158
examples 155-158
scaling 155
Pascal
CFMWK and DCFMWK routines 148
communication with 75-93
corresponding C data types 76
data types 76
debugger 91
interlanguage communication, native 91
keyword 83
routine, declaring 92
Pascal and ILC
data types 76
external data sharing 91
passing data 77, 83
returning data 81, 86
versions supported 76
Pascal calling conventions 26
Pascal PCWA control block 184
PASCAL-C programs 134
debugging 134
pass by CONST 26
pass by reference 25-26, 27
Pascal-C programs 77
pass by value 25
Pascal-C programs 77
pass by VAR 26
passing
arrays 216
character literals 132
constants, FORTRAN-C programs 132
constants, PL/I-C programs 133
expressions, PL/I-C programs 133
information to the Comm-routine, outret 198
language token to a __foreign routine 166
PACKED ARRAY OF REAL 77
PACKED ARRAY OF RECORDS 77
routine descriptors 217
SET to a C function, example 92

strings 132
strings, Pascal-C programs 134
passing arguments
data type conversion macros 165
from C 165-166
from C to other languages 27-28
nonpointer 165
nonpointer arguments 27
pointer arguments 27
unsupported types 165-166
passing array arguments
C to FORTRAN 43
C to Pascal 84
Cto PL/T 64
FORTRAN to C 40
Pascal to C 79
PL/Ito C 60
passing bit arguments
Cto PL/T 64
passing BIT(n) arguments
PL/Ito C 60
passing CHAR(n) arguments
PL/Ito C 60
passing CHAR(n) VARYING arguments
PL/Tto C 60
passing character arguments
C to COBOL 54
C to FORTRAN 42-43
Cto PL/T 63
FORTRAN to C 39-40
passing character literal arguments
C to Pascal 84
passing COMP-3 arguments
COBOL to C 51
passing CRAB address to Begin-routine 200
passing data
C to COBOL 53-55
C to FORTRAN 41-44
C to Pascal 83-86
C to PL/I 62-65
COBOL to C 50-52
FORTRAN to C 39-44
Pascal to C 77
PL/I to C 59-60
passing FIXED DECIMAL arguments
PL/Tto C 59
passing fixed-length string arguments
Cto PL/I 64
passing FUNCTION arguments
C to Pascal 86
example 86
Pascal to C 80
passing function pointers
C to FORTRAN 44
Cto PL/I 65
C to your language 218
___foreign 206
passing packed decimal arguments
C to COBOL 54
passing PIC X(n) arguments
COBOL to C 51
passing pointer arguments
C to COBOL 54
C to Pascal 85
Cto PL/I 64

passing pointers
C to user-supported language 165
passing PROCEDURE arguments
C to Pascal 86
Pascal to C 80
passing RECORD arguments
C to Pascal 85
passing record arguments
COBOL to C 52
Pascal to C 80
passing run-time options
with CFMWK 164
with Framework-routine 184
with mkfmwk 164
passing SET arguments
C to Pascal 85
example 79
Pascal to C 79
passing string arguments
C to COBOL 54
C to FORTRAN 43
C to Pascal 85
Cto PL/I 64
example, to FORTRAN 43
Pascal to C 79
passing string literals 165
from C to other languages 27, 31
passing strings
fixed-length 34
variable-length 34
passing structure arguments
Cto COBOL 54
Cto PL/I 65
PL/Ito C 60
passing table arguments
COBOL to C 51
passing varying-length string arguments
Cto PL/T 64
pdset macro 21, 155, 156-157
example 156-157
pdval macro 21, 155, 158
example 158
PIC X(n) arguments
passing from COBOL to C 51
PL/I
and ILC
ATTENTION ON-unit 137
CFMWK and DCFMWK routines 147-148
Checkout Compiler 73
Checkout Compiler, SIZE option 134
communication with 57-74
corresponding C data types 58
data types 58
debugging 73
error handling 71
external data sharing 71
GOTO statement 17
keyword 62
linking considerations 72, 110, 111
multitasking 62
ON-units 134
passing data 59, 62
returning data 60, 65
routines, declaring in C 62

Index 255

256 Index

TESA field of TCA 181
versions supported 58
PL/I descriptors 26-27
definition 20
PL/I-C programs 133-134
debugging 133-134

planned termination of execution frameworks 15-16

PLIST operand of CCOMM macro 204
PLITEST 73
point of ABEND, finding 128
C to COBOL 54
C to Pascal 85
Cto PL/I 64
C to user-supported language 165
pointer arguments, passing 27
pointer data types 24
pointer data, TYP_INT 193
pointer values
returning 212
pointer, void 24, 27
post-CCOMM processing 205-207
pre-polong routine 14
See also Prep-routine 177
Prep-routine 176, 184, 186-189, 201, 207
entry point 186
format of name 186
implementation 186
implementing flow of control 188-189
language 186
linkage conventions 188
saving register values 201
preventing memory overlays 139
PREVSA operand of ILCEXIT macro 209
printf format, %V 159
PROCEDURE arguments
passing from C to Pascal 86
PROCESS CLINK
control statement examples 105
format 104-105
process communication
example 170, 171
in ILC 170
PROCESS control statement 104
examples 105, 106, 107, 108
process control, switching 170
PROCESS GENMOD
control statement examples 108
format 108
FROM option 111
PROCESS LINK
control statement examples 106
format 106
PROCESS LKED 106-107
PROCESS LOAD
format 107
NODUP option 111
process, deleting
C 178
non-C 179
processing return values 197-199, 211-213
profile attribute, WITPMSG 129, 132
program checks
joint handling in Pascal-C 91
prolog code, address 212
promotion of arguments 31

prototype, function 20
PRVs, switching with Comm-routine 218
pseudoregisters
removal 72
vector 218
pseudoregisters 134

Q

QCFMWK routine 139
arguments 150
declaring in PL/I 133
example of calling from C 151
example of calling from PL/I 152
quiescing the C framework 150-152
quiet function 132

QUIT message 178, 179, 180, 182, 185-186, 200, 202

203
Quit-routine 180, 206
argument 185
format of name 185
implementation 185
language 185
variations on name format 186
versions of FORTRAN 186

range

language numbers 183

user-defined tag values 195
receiving messages under TSO 128, 132
RECORD arguments

passing from C to Pascal 85

passing from Pascal to C 80
record arguments

passing from COBOL to C 52
recursion, Comm-routine 202, 207
redirecting output in PL/I-C programs 72
reentrancy 137

and CRAB address word 184

and external variables 137

and FORTRAN-C programs 137
REF/DEF variables 91
register

base 208

containing CRAB address 209

work 208, 209
register 1 201, 206, 207, 208, 211

CRAB address word 188

value, specifying with ARGS= 205
register 13 201, 207, 209, 212

‘CSA’ constant 188

Prep-routine 186

save area address 183
register 14

L$CIQIT 181, 182

Prep-routine 186

value, copying from routine save area 181
register 15 185, 201, 207, 209

L$CINCE routine 188

nonzero CRAB address word 188

1)

obtaining original value 201
Prep-routine 186

replacing arguments in data type conversion macros

196-197
REPT= operand of CCOMM macro 205
requirements for the CRAB address word 183
RESP operand of CCOMM macro 204, 206
restrictions on mixing PL/T and C 72
restrictions on Pascal
MAIN routine 92
PROGRAM 92
REENTRANT 92
results, incorrect 131
RET function 207
RET message 176, 178, 188, 190, 198, 202
RET operand of CCOMM macro 204
RETP operand of CCOMM macro 206, 212-213
retrying ABENDs 210
return message 202
return token, in cargs 193
return token tag value 193
return value address, cret 198
return value area
of ILCP 207
specifying with RETP= 205
return value handling
overview 28
return value of Xform-routine 192
return value processing 197-199, 211-213
calls from C to non-C 198, 211-212
calls from non-C to C 198, 212-213
scalars 198, 212
structures 198, 212
Xform-routine 198, 211-212
return values
format 212
passing through memory 197
returning
ambiguous data types 211
arrays 211
character values 212
double values 212
floating-point values 212
integral values 212
non-structure values 211
pointer values 212
scalar values 206, 212
SET values from Pascal to C 87, 92-93
short values 212
structure values 211-212
unions 212
values from C to your language 212
values from your language to C 211
values in registers, Comm-routine 211
returning ARRAY OF CHAR values
C to Pascal 81
Pascal to C 87
returning CHARACTER values
C to FORTRAN 40
FORTRAN to C 44
returning COMPLEX values
C to FORTRAN 40
FORTRAN to C 44
returning data
C to COBOL 52

Index 257

C to FORTRAN 40
C to Pascal 81
Cto PL/T 60
COBOL to C 55
example, COBOL to C 55
example, Pascal to C 86
FORTRAN to C 44
Pascal to C 86
PL/Ito C 65
returning STRING(n) values
C to Pascal 81
Pascal to C 86
returning values
with C functions 165
with FUNCTIONS 166
returning values from PL/I to C
BIT(n) 65
CHAR(n) 65
CHAR(n) VARYING 65
routine address 216
routine descriptors 216
passing to C 217
routine names
examples 30
format 168
routine save area 181
routine, definition 4
routine, main
See main routine
routines
declaring in other languages 29-30
run-time errors
effects on execution frameworks 15, 16
run-time library, definition 4
run-time options
=btrace 132
COBOL 49-50
ERRFILE 134
=multitask 91, 132, 210, 219
passing with CFMWK 164
passing with Framework-routine 184
passing with mkfmwk 164
=storage 128
running several programs at once 139
under CMS 139
with one TCB 139
with several TCBs 139

sample
Begin-routine 213-214
Comm-routine 213-214
FORTRAN Xform-routine 199-200
SAS/C library error 127-128
SASC.ILCOBJ object module for LEIMIXD 182
SASC.ILCSUB object module for L$IMIXD 182
save area address 183
returning zero 182
save area chain 11, 12, 13-14
example 13-14
save area for routines 181
saving registers, and Comm-routine 207
scalar values, returning 206, 212

258 Index

scaling packed decimal data 155
second argument of CFMWK routine 219
second byte of cargs token 192
selecting CRAB address word 183
SET arguments
passing from C to Pascal 85
passing from Pascal to C 79-81, 92-93
—SET macro 83, 85, 87, 88, 195
example 88
SET values, returning from Pascal to C 87
sets, TYP_BIT 195
sharing data
external symbols 34
external variables 34
sharing data in Pascal-C programs
aggregate 78
PACKED 78
sharing FILE variables 24
short values, returning 212
SIGFPE handler 91
signal/condition handling 137
simultaneous programs 139
under CMS 139
with one TCB 139
with several TCBs 139
SIZE option, Checkout Compiler 134
sizeof function 197
specifying = 205

eatry point of a function with CALL = 205

language keywords 27, 29
register 1 value with ARGS = 205
return value area with RETP = 205
SPIE macro 219
STAE macro 219
standard linkage
definition 20
IBM 165
<stdlib.h> header file 47, 133
STORAGE debugger command 128, 132
storage overlays, debugging 131, 132
=storage run-time option 128
storing support routine object code 169
_STRARRAY macro 64, 68
example 68
implementing 197
output 197
string arguments
passing from C to COBOL 54
passing from C to FORTRAN 43
passing from C to Pascal 85
passing from C to PL/I 64
passing from Pascal to C 79
string array, defining to PL/I 68
string data types 22
string literals
definition 20
passing 165
passing as fixed-length 34
passing as variable-length 34
passing from C to other languages 27, 31
TYP_STRING 194
TYP_STRLIT 194

—STRING macro 27, 30, 34, 43, 45, 53, 54, 64, 69, 83,

85, 87, 89, 130, 133, 165, 215
TYP_STRING 194

string structures, arrays of 197
STRING(n) values
returning from C to Pascal 81
returning from Pascal to C 81, 86
strings
fixed-length 194
format equivalence 215
passing 132
passing in Pascal-C programs 134
varying-length 194
structure arguments
passing from C to COBOL 54
passing from C to PL/I 65
passing from PL/I to C 60
structyre data, TYP_STRUCT 194
structure data types 23-24
structure
mapping 33
structures
mapping 133
returning 211, 212
strvcpy macro 159
subroutine, definition 5
SUBROUTINE, definition 5
support routines
Comm-routine 169, 170
examples in source form 169
for an interface 169
functional details 169
linkage conventions 169
macros in examples 169
names 169
object code storage 169
supported language table 167
adding operands 182
LANGDEF macro 182
source 182
updating 182-183
supporting arrays of string structures 197
supporting two versions of a language 168
switching processes 170
switching PRVs, Comm-routine 218
symbols, external 216
SYNCHRONIZED clause in COBOL 54
syntax of CCOMM macro 203
SYS operand of ILCENTRY macro 208
SYSPRINT file 134
SYSTEM control statement
examples 109-110
system exit routines 12

T

table arguments
passing from COBOL to C 51
Tag macro 192
tag values
in cargs 193-195
range of user-defined 195, 196
return token 193
TYP_AFUNC 194, 218
TYP_BIT 195
TYP_CFUNC 194, 218
TYP_DIM 195, 197

TYP_ELEM 195, 197
TYP_FFUNC 194, 218
TYP_FLT 194
TYP_INT 193
TYP_INV 195
TYP_STRING 194
TYP_STRLIT 194
TYP_STRUCT 194
TYP_VOID 193
TYP_VSTR 194
user-defined 195, 196
tag, token 192
TCB 139
terminating a process 205
entry through Begin-routine 206
entry through Comm-routine 206
terminating execution frameworks
abnormal 15-16
C, normal 178
C, unexpected 180
effects of 15-16
non-c, normal 179
non-c, unexpected 181
order of 138
planned 15
third argument
CFMWK routine 164
token
DCFMWK 164
difmwk 164
language 165, 166
returned by mkfmwk 164
token argument
ACFMWK routine 153
CFMWK routine 146
DCFMWK routine 149
QCFMWK routine 150
token ids 192
TOK_ARG token id 193
TOK_END token id 193
TOK_LANG token id 193
TOK_MAC token id 193
TOK_RET token id 193
token length, in cargs 192
token length field
array data 195
fixed-length string data 194
floating-point data 194
integer data 193
pointer data 193
string literal data 194
structure data 194
varying-length string data 194

token list passed to Xform-routine, example 195-196

Token macro 192
token tag, in cargs 192
token types of cargs 192
tracebacks 129

and Comm-routine 210

transforming an argument list, the Xform-routine 189-200

Sece also Xform-routine

TSO DDnames
allocating for ILCLINK 120-121
for ILCLINK 109

TSO ILCLINK example 118-119, 120-121

Index 259

TSO messages, receiving 128-129, 132
TSO object module for L$IMIXD 182
TSO profile attribute, WTPMSG 129, 132
two languages, using more than 138

two versions of a language, supporting 168
TYP_AFUNC tag value 194, 218
TYP_BIT tag value 195

TYP_CFUNC tag value 194, 218
TYP_DIM tag value 195, 197
TYP_ELEM tag value 195, 197
TYP_FFUNC tag value 194, 218
TYP_FLT tag value 194

TYP_INT tag value 193

TYP_INV tag value 195

TYP_STRING tag value 194
TYP_STRLIT tag value 194
TYP_STRUCT tag value 194

TYP_VOID tag value 193

TYP_VSTR tag value 194

TYPE operand of ILCENTRY macro 208

U

unexpected termination
C framework 180
frameworks, overview 16
non-C framework 181
unformatted 1I/0
definition 20
file sharing 29
unions
returning 212
unsupported argument types, passing 165
updating supported language table 182-183
user ABENDs 127-128
user-coded main routines
restrictions with CFMWK routine 13
user-supported languages
and ILCLINK 166
creating frameworks 164
documentating interfaces 163
execution frameworks 141
implementing 167-171
interfaces 163-166
keyword 29
using a non-standard language interface 163-166
using an interface, prerequisites 163

Vv

%V 159
value tokens

in cargs 193

token id 193
value-returning functions 165
value-returning FUNCTIONS 166
VAR arguments 77
VAR STRING arguments 85
variables , 71, 91

external 216

global automatic 91

names, external 47

260 Index

varying-length string macros 159-160
examples 160
strvepy 159
vstrcpy 159
VSTRING 159
vstrinit 159
vstrlen 159
vstrmax 159
varying-length strings, TYP_VSTR 194
versions supported
COBOL 49
FORTRAN 38
Pascal 76
PL/I 58
void function 7
definition 5
void pointer 24, 27
vstrcpy macro 159

VString compiler option 34, 64, 85, 89, 90, 134, 194,

195
example 34
VSTRING macro 159
<vstring.h> 64, 159
vstrinit macro 159
vstrlen macro 159
vstrmax macro 159

WKREGS operand
ILCENTRY macro 208
ILCEXIT macro 209
work registers, WKREGS operand
ILCENTRY macro 208
ILCEXIT macro 209
WTPMSG profile attribute 129, 132

X

Xform-routine 178, 189-200, 207, 211, 216
after 192
and L$CICTL 189
argument list 192, 206
cargs 192
cret 192
format of name 189
implementation 189
language 189
linkage conventions 190
outargs 192
outret 192
passing function pointers 218
purpose 189
return value if successful 192
return value processing 197-199
returning values 211-213
sample, FORTRAN 199-200
saving PRV address 218
setting after flag 192
string conversion 215 .
token list, example 195-196

zero as save area address 182

Special Characters

& operator 54, 64, 85, 134, 196

—alignmem keyword 77

—alignmem qualifier 33

——cobol keyword 53

—foreign keyword 29, 165
function pointers, using in C 217
keyword 177

—fortran keword 41

—noalignmem keyword 52, 54, 77, 85, 133, 134

——noalignmem qualifier 24, 33

—pascal keyword 83

—pli keyword 62, 64

—sizelem compiler operator 197

@ operator 30, 33, 54, 64, 85, 134, 196
using to pass function arguments 33

0Cx ABEND 129, 131
0C1 ABEND 129
0C4 ABEND 129, 209
0C6 ABEND 129
0C7 ABEND 130, 158

1

1233 ABEND 128
1234 ABEND 128, 131, 188
1235 ABEND 128, 192

24-bit addressing mode 136

3

31-bit addressing mode 136

Your Turn

If you have comments or suggestions about the SAS/C Compiler
Interlanguage Communication Feature, Release 4.00, or the SAS/C
compiler, please send them to us on a photocopy of this page.

Please return the photocopy to the Publications Division (for
comments about this book) or the Technical Support Department (for
suggestions about the compiler) at SAS Institute Inc., SAS Circle, Box
8000, Cary, NC 27512-8000.

)/ /4

SAS Institute Inc.
SAS Circle [J Box 8000
Cary, NC 27512-8000

ISBN 1-55544-323-0

9 "781555"443238

